******************************************************************************
*/
/* Includes ------------------------------------------------------------------*/
#include "stm32f10x.h"
/** @addtogroup STM32F10x_StdPeriph_Examples
* @{
*/
/** @addtogroup TIM_TIM1_Synchro
* @{
*/
/* Private typedef -----------------------------------------------------------*/
/* Private define ------------------------------------------------------------*/
/* Private macro -------------------------------------------------------------*/
/* Private variables ---------------------------------------------------------*/
TIM_TimeBaseInitTypeDef TIM_TimeBaseStructure;
TIM_OCInitTypeDef TIM_OCInitStructure;
TIM_BDTRInitTypeDef TIM_BDTRInitStructure;
/* Private function prototypes -----------------------------------------------*/
void RCC_Configuration(void);
void GPIO_Configuration(void);
/* Private functions ---------------------------------------------------------*/
/**
* @brief Main program
* @param None
* @retval None
*/
int main(void)
{
/*!< At this stage the microcontroller clock setting is already configured,
this is done through SystemInit() function which is called from startup
file (startup_stm32f10x_xx.s) before to branch to application main.
To reconfigure the default setting of SystemInit() function, refer to
system_stm32f10x.c file
*/
/* System Clocks Configuration */
RCC_Configuration();
/* GPIO Configuration */
GPIO_Configuration();
/* TIM1 and Timers(TIM3 and TIM4) synchronisation in parallel mode -----------
1/TIM1 is configured as Master Timer:
- PWM Mode is used
- The TIM1 Update event is used as Trigger Output
2/TIM3 and TIM4 are slaves for TIM1,
- PWM Mode is used
- The ITR0(TIM1) is used as input trigger for both slaves
- Gated mode is used, so starts and stops of slaves counters
are controlled by the Master trigger output signal(update event).
o For Low-density, Medium-density, High-density and Connectivity line devices:
The TIMxCLK is fixed to 72 MHz, Prescaler = 0 so the TIM1 counter clock is 72 MHz.
The Master Timer TIM1 is running at:
TIM1 frequency = TIM1 counter clock / (TIM1_Period + 1) = 281.250 KHz
and the duty cycle is equal to: TIM1_CCR1/(TIM1_ARR + 1) = 50%
The TIM3 is running at:
(TIM1 frequency)/ ((TIM3 period +1)* (Repetition_Counter+1)) = 18.750 KHz and
a duty cycle equal to TIM3_CCR1/(TIM3_ARR + 1) = 33.3%
The TIM4 is running at:
(TIM1 frequency)/ ((TIM4 period +1)* (Repetition_Counter+1)) = 28.125 KHz and
a duty cycle equal to TIM4_CCR1/(TIM4_ARR + 1) = 50%
o For Low-Density Value line and Medium-Density Value line devices:
The TIMxCLK is fixed to 24 MHz, Prescaler = 0 so the TIM1 counter clock is 24 MHz.
TIM1 frequency = 93.75 KHz
TIM3 frequency = 6.25 KHz
TIM4 frequency = 9.375 KHz
--------------------------------------------------------------------------- */
/* TIM3 Peripheral Configuration ----------------------------------------*/
/* TIM3 Slave Configuration: PWM1 Mode */
TIM_TimeBaseStructure.TIM_Period = 2;
TIM_TimeBaseStructure.TIM_Prescaler = 0;
TIM_TimeBaseStructure.TIM_ClockDivision = 0;
TIM_TimeBaseStructure.TIM_CounterMode = TIM_CounterMode_Up;
TIM_TimeBaseInit(TIM3, &TIM_TimeBaseStructure);
TIM_OCInitStructure.TIM_OCMode = TIM_OCMode_PWM1;
TIM_OCInitStructure.TIM_OutputState = TIM_OutputState_Enable;
TIM_OCInitStructure.TIM_Pulse = 1;
TIM_OC1Init(TIM3, &TIM_OCInitStructure);
/* Slave Mode selection: TIM3 */
TIM_SelectSlaveMode(TIM3, TIM_SlaveMode_Gated);
TIM_SelectInputTrigger(TIM3, TIM_TS_ITR0);
RE:TIM1为何没有PWM输出
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP;
GPIO_Init(GPIOA, &GPIO_InitStructure);
//====================================//
void PWM_FROM_TIM1_Configuration(void)
{
TIM_TimeBaseInitTypeDef TIM_BaseInitStructure;
TIM_OCInitTypeDef TIM_OCInitStructure;
// TIM_BDTRInitTypeDef TIM1_BDTRInitStructure;
//TIM1_OC1:set PWM channel 1 duty
TIM_OCInitStructure.TIM_OCMode = TIM_OCMode_PWM1;
TIM_OCInitStructure.TIM_OutputState = TIM_OutputState_Enable;
TIM_OCInitStructure.TIM_OutputNState = TIM_OutputNState_Disable;
TIM_OCInitStructure.TIM_OCPolarity = TIM_OCPolarity_High;
TIM_OCInitStructure.TIM_OCNPolarity = TIM_OCNPolarity_High;
TIM_OCInitStructure.TIM_Pulse = PWM_DUTY_0_PERCENT;
TIM_OCInitStructure.TIM_OCIdleState = TIM_OCIdleState_Reset;
TIM_OCInitStructure.TIM_OCNIdleState = TIM_OCIdleState_Reset;
//TIM1_OC1:set PWM channel 1 duty
TIM_OC1Init(TIM1, &TIM_OCInitStructure);
TIM_OCInitStructure.TIM_OutputState = TIM_OutputState_Enable;
TIM_OCInitStructure.TIM_Pulse = PWM_DUTY_0_PERCENT;
TIM_OC1PreloadConfig(TIM1, TIM_OCPreload_Enable);
//TIM1_OC2:set PWM channel 2 duty
TIM_OC2Init(TIM1, &TIM_OCInitStructure);
TIM_OCInitStructure.TIM_OutputState = TIM_OutputState_Enable;
TIM_OCInitStructure.TIM_Pulse = PWM_DUTY_0_PERCENT;
TIM_OC2PreloadConfig(TIM1, TIM_OCPreload_Enable);
//TIM1_OC3:set PWM channel 3 duty
TIM_OC3Init(TIM1, &TIM_OCInitStructure);
TIM_OCInitStructure.TIM_OutputState = TIM_OutputState_Enable;
TIM_OCInitStructure.TIM_Pulse = PWM_DUTY_0_PERCENT;
TIM_OC3PreloadConfig(TIM1, TIM_OCPreload_Enable);
//TIM1_OC4:set PWM channel 4 duty
TIM_OC4Init(TIM1, &TIM_OCInitStructure);
TIM_OCInitStructure.TIM_OutputState = TIM_OutputState_Enable;
TIM_OCInitStructure.TIM_Pulse = PWM_DUTY_0_PERCENT;
TIM_OC4PreloadConfig(TIM1, TIM_OCPreload_Enable);
//TIM1 base counter(PWM frequency is 100Hz)
//72MHz/TIM_PRESCALER=1MHz,PWM Frequency = 1MHz / PWM_PERIOD
TIM_BaseInitStructure.TIM_Prescaler = TIM_PRESCALER-1;
TIM_BaseInitStructure.TIM_CounterMode = TIM_CounterMode_Up;
TIM_BaseInitStructure.TIM_Period = PWM_PERIOD-1;
TIM_BaseInitStructure.TIM_ClockDivision = 0;
TIM_BaseInitStructure.TIM_RepetitionCounter = 0;
TIM_TimeBaseInit(TIM1, &TIM_BaseInitStructure);
TIM_ARRPreloadConfig(TIM1, ENABLE);
TIM_ClearITPendingBit(TIM1, TIM_IT_Update | TIM_IT_CC1 | TIM_IT_CC2 | TIM_IT_CC3 | TIM_IT_CC4);
//open TIM1
TIM_Cmd(TIM1, ENABLE);
//enable TIM1_CO to enable PWM channel x(must be added)
TIM_CtrlPWMOutputs(TIM1, ENABLE);
}
RE:TIM1为何没有PWM输出
RE:TIM1为何没有PWM输出【悬赏问答】
#include "stm32f10x.h"
#include "stm32f10x_tim.h"
#include "stm32f10x_rcc.h"
#include "stm32f10x_flash.h"
#include "stm32f10x_gpio.h"
#include "misc.h"
/* Private typedef -----------------------------------------------------------*/
/* Private define ------------------------------------------------------------*/
/* Private macro -------------------------------------------------------------*/
/* Private variables ---------------------------------------------------------*/
TIM_TimeBaseInitTypeDef TIM1_TimeBaseStructure;
TIM_OCInitTypeDef TIM1_OCInitStructure;
TIM_BDTRInitTypeDef TIM1_BDTRInitStructure;
u16 capture = 0;
u16 CCR1_Val = 0x7FFF ;
u16 CCR2_Val = 0x3FFF ;
u16 CCR3_Val = 0x1FFF ;
ErrorStatus HSEStartUpStatus;
/* Private function prototypes -----------------------------------------------*/
void RCC_Configuration(void);
void GPIO_Configuration(void);
void NVIC_Configuration(void);
/* Private functions ---------------------------------------------------------*/
/*******************************************************************************
* Function Name : main
* Description : Main program
* Input : None
* Output : None
* Return : None
*******************************************************************************/
int main(void)
{
#ifdef DEBUG
debug();
#endif
/* System Clocks Configuration */
RCC_Configuration();
/* GPIO Configuration */
GPIO_Configuration();
/* NVIC configuration */
NVIC_Configuration();
/* -----------------------------------------------------------------------
TIM1 Configuration to:
1/ Generate 3 complementary PWM signals with 3 different duty cycles:
TIM1CLK = 72 MHz, Prescaler = 0x0, TIM1 counter clock = 72 MHz
TIM1 frequency = TIM1CLK/(TIM1_Period + 1) = 1.098 KHz
TIM1 Channel1 duty cycle = TIM1->CCR1 / TIM1_Period = 50%
TIM1 Channel1N duty cycle = (TIM1_Period - TIM1_CCR1) / (TIM1_Period + 1) = 50%
TIM1 Channel2 duty cycle = TIM1_CCR2 / TIM1_Period = 25%
TIM1 Channel2N duty cycle = (TIM1_Period - TIM1_CCR1) / (TIM1_Period + 1) = 75%
TIM1 Channel3 duty cycle = TIM1_CCR3 / TIM1_Period = 12.5%
TIM1 Channel3N duty cycle = (TIM1_Period - TIM1_CCR3) / (TIM1_Period + 1) = 87.5%
2/ Insert a dead time equal to 1.62 us
3/ Configure the break feature, active at High level, and using the automatic
output enable feature
4/ Use the Locking parametres level1.
----------------------------------------------------------------------- */
/* TIM1 Peripheral Configuration */
TIM_DeInit(TIM1);
/* Time Base configuration */
TIM1_TimeBaseStructure.TIM_Prescaler = 0x0;
TIM1_TimeBaseStructure.TIM_CounterMode = TIM_CounterMode_Up;
TIM1_TimeBaseStructure.TIM_Period = 0xFFFF;
TIM1_TimeBaseStructure.TIM_ClockDivision = 0x0;
TIM1_TimeBaseStructure.TIM_RepetitionCounter = 0x0;
TIM_TimeBaseInit(TIM1,&TIM1_TimeBaseStructure);
/* Channel 1, 2,3 and 4 Configuration in PWM mode */
TIM1_OCInitStructure.TIM_OCMode = TIM_OCMode_PWM2;
TIM1_OCInitStructure.TIM_OutputState = TIM_OutputState_Enable;
TIM1_OCInitStructure.TIM_OutputNState = TIM_OutputNState_Enable;
TIM1_OCInitStructure.TIM_Pulse = CCR2_Val;
TIM1_OCInitStructure.TIM_OCPolarity = TIM_OCPolarity_Low;
TIM1_OCInitStructure.TIM_OCNPolarity = TIM_OCNPolarity_Low;
TIM1_OCInitStructure.TIM_OCIdleState = TIM_OCIdleState_Set;
TIM1_OCInitStructure.TIM_OCNIdleState = TIM_OCIdleState_Reset;
TIM_OC1Init(TIM1,&TIM1_OCInitStructure);
TIM1_OCInitStructure.TIM_Pulse = CCR2_Val;
TIM_OC2Init(TIM1,&TIM1_OCInitStructure);
TIM1_OCInitStructure.TIM_Pulse = CCR3_Val;
TIM_OC3Init(TIM1,&TIM1_OCInitStructure);
/* Automatic Output enable, Break, dead time and lock configuration*/
TIM1_BDTRInitStructure.TIM_OSSRState = TIM_OSSRState_Enable;
TIM1_BDTRInitStructure.TIM_OSSIState = TIM_OSSIState_Enable;
TIM1_BDTRInitStructure.TIM_LOCKLevel = TIM_LOCKLevel_1;
TIM1_BDTRInitStructure.TIM_DeadTime = 0x75;
TIM1_BDTRInitStructure.TIM_Break = TIM_Break_Enable;
TIM1_BDTRInitStructure.TIM_BreakPolarity = TIM_BreakPolarity_High;
TIM1_BDTRInitStructure.TIM_AutomaticOutput = TIM_AutomaticOutput_Enable;
TIM_BDTRConfig(TIM1,&TIM1_BDTRInitStructure);
/* TIM1 counter enable */
TIM_Cmd(TIM1,ENABLE);
/* Main Output Enable */
TIM_CtrlPWMOutputs(TIM1,ENABLE);
while(1)
{
}
}
/*******************************************************************************
* Function Name : RCC_Configuration
* Description : Configures the different system clocks.
* Input : None
* Output : None
* Return : None
*******************************************************************************/
void RCC_Configuration(void)
{
/* RCC system reset(for debug purpose) */
RCC_DeInit();
/* Enable HSE */
RCC_HSEConfig(RCC_HSE_ON);
/* Wait till HSE is ready */
HSEStartUpStatus = RCC_WaitForHSEStartUp();
if(HSEStartUpStatus == SUCCESS)
{
/* HCLK = SYSCLK */
RCC_HCLKConfig(RCC_SYSCLK_Div1);
/* PCLK2 = HCLK */
RCC_PCLK2Config(RCC_HCLK_Div1);
/* PCLK1 = HCLK/2 */
RCC_PCLK1Config(RCC_HCLK_Div2);
/* Flash 2 wait state */
FLASH_SetLatency(FLASH_Latency_2);
/* Enable Prefetch Buffer */
FLASH_PrefetchBufferCmd(FLASH_PrefetchBuffer_Enable);
/* PLLCLK = 8MHz * 9 = 72 MHz */
RCC_PLLConfig(RCC_PLLSource_HSE_Div1, RCC_PLLMul_9);
/* Enable PLL */
RCC_PLLCmd(ENABLE);
/* Wait till PLL is ready */
while(RCC_GetFlagStatus(RCC_FLAG_PLLRDY) == RESET)
{
}
/* Select PLL as system clock source */
RCC_SYSCLKConfig(RCC_SYSCLKSource_PLLCLK);
/* Wait till PLL is used as system clock source */
while(RCC_GetSYSCLKSource() != 0x08)
{
}
}
/* TIM1, GPIOA and GPIOB clock enable */
RCC_APB2PeriphClockCmd(RCC_APB2Periph_TIM1 | RCC_APB2Periph_GPIOA |
RCC_APB2Periph_GPIOB, ENABLE);
}
/*******************************************************************************
* Function Name : GPIO_Configuration
* Description : Configure the TIM1 Pins.
* Input : None
* Output : None
* Return : None
*******************************************************************************/
void GPIO_Configuration(void)
{
GPIO_InitTypeDef GPIO_InitStructure;
/* GPIOA Configuration: Channel 1 Output */
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_8;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP;
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
GPIO_Init(GPIOA, &GPIO_InitStructure);
}
/*******************************************************************************
* Function Name : NVIC_Configuration
* Description : Configure the nested vectored interrupt controller.
* Input : None
* Output : None
* Return : None
*******************************************************************************/
void NVIC_Configuration(void)
{
#ifdef VECT_TAB_RAM
/* Set the Vector Table base location at 0x20000000 */
NVIC_SetVectorTable(NVIC_VectTab_RAM, 0x0);
#else /* VECT_TAB_FLASH */
/* Set the Vector Table base location at 0x08000000 */
NVIC_SetVectorTable(NVIC_VectTab_FLASH, 0x0);
#endif
}
#ifdef DEBUG
/*******************************************************************************
* Function Name : assert_failed
* Description : Reports the name of the source file and the source line number
* where the assert error has occurred.
* Input : - file: pointer to the source file name
* - line: assert error line source number
* Output : None
* Return : None
*******************************************************************************/
void assert_failed(u8* file, u32 line)
{
/* User can add his own implementation to report the file name and line number,
ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */
while(1)
{
}
}
#endif
RE:TIM1为何没有PWM输出【悬赏问答】
/**
******************************************************************************
* @file TIM/TIM1_Synchro/main.c
* @author MCD Application Team
* @version V3.5.0
* @date 08-April-2011
* @brief Main program body
******************************************************************************
* @attention
*
* THE PRESENT FIRMWARE WHICH IS FOR GUIDANCE ONLY AIMS AT PROVIDING CUSTOMERS
* WITH CODING INFORMATION REGARDING THEIR PRODUCTS IN ORDER FOR THEM TO SAVE
* TIME. AS A RESULT, STMICROELECTRONICS SHALL NOT BE HELD LIABLE FOR ANY
* DIRECT, INDIRECT OR CONSEQUENTIAL DAMAGES WITH RESPECT TO ANY CLAIMS ARISING
* FROM THE CONTENT OF SUCH FIRMWARE AND/OR THE USE MADE BY CUSTOMERS OF THE
* CODING INFORMATION CONTAINED HEREIN IN CONNECTION WITH THEIR PRODUCTS.
*
* © COPYRIGHT 2011 STMicroelectronics
******************************************************************************
*/
/* Includes ------------------------------------------------------------------*/
#include "stm32f10x.h"
/** @addtogroup STM32F10x_StdPeriph_Examples
* @{
*/
/** @addtogroup TIM_TIM1_Synchro
* @{
*/
/* Private typedef -----------------------------------------------------------*/
/* Private define ------------------------------------------------------------*/
/* Private macro -------------------------------------------------------------*/
/* Private variables ---------------------------------------------------------*/
TIM_TimeBaseInitTypeDef TIM_TimeBaseStructure;
TIM_OCInitTypeDef TIM_OCInitStructure;
TIM_BDTRInitTypeDef TIM_BDTRInitStructure;
/* Private function prototypes -----------------------------------------------*/
void RCC_Configuration(void);
void GPIO_Configuration(void);
/* Private functions ---------------------------------------------------------*/
/**
* @brief Main program
* @param None
* @retval None
*/
int main(void)
{
/*!< At this stage the microcontroller clock setting is already configured,
this is done through SystemInit() function which is called from startup
file (startup_stm32f10x_xx.s) before to branch to application main.
To reconfigure the default setting of SystemInit() function, refer to
system_stm32f10x.c file
*/
/* System Clocks Configuration */
RCC_Configuration();
/* GPIO Configuration */
GPIO_Configuration();
/* TIM1 and Timers(TIM3 and TIM4) synchronisation in parallel mode -----------
1/TIM1 is configured as Master Timer:
- PWM Mode is used
- The TIM1 Update event is used as Trigger Output
2/TIM3 and TIM4 are slaves for TIM1,
- PWM Mode is used
- The ITR0(TIM1) is used as input trigger for both slaves
- Gated mode is used, so starts and stops of slaves counters
are controlled by the Master trigger output signal(update event).
o For Low-density, Medium-density, High-density and Connectivity line devices:
The TIMxCLK is fixed to 72 MHz, Prescaler = 0 so the TIM1 counter clock is 72 MHz.
The Master Timer TIM1 is running at:
TIM1 frequency = TIM1 counter clock / (TIM1_Period + 1) = 281.250 KHz
and the duty cycle is equal to: TIM1_CCR1/(TIM1_ARR + 1) = 50%
The TIM3 is running at:
(TIM1 frequency)/ ((TIM3 period +1)* (Repetition_Counter+1)) = 18.750 KHz and
a duty cycle equal to TIM3_CCR1/(TIM3_ARR + 1) = 33.3%
The TIM4 is running at:
(TIM1 frequency)/ ((TIM4 period +1)* (Repetition_Counter+1)) = 28.125 KHz and
a duty cycle equal to TIM4_CCR1/(TIM4_ARR + 1) = 50%
o For Low-Density Value line and Medium-Density Value line devices:
The TIMxCLK is fixed to 24 MHz, Prescaler = 0 so the TIM1 counter clock is 24 MHz.
TIM1 frequency = 93.75 KHz
TIM3 frequency = 6.25 KHz
TIM4 frequency = 9.375 KHz
--------------------------------------------------------------------------- */
/* TIM3 Peripheral Configuration ----------------------------------------*/
/* TIM3 Slave Configuration: PWM1 Mode */
TIM_TimeBaseStructure.TIM_Period = 2;
TIM_TimeBaseStructure.TIM_Prescaler = 0;
TIM_TimeBaseStructure.TIM_ClockDivision = 0;
TIM_TimeBaseStructure.TIM_CounterMode = TIM_CounterMode_Up;
TIM_TimeBaseInit(TIM3, &TIM_TimeBaseStructure);
TIM_OCInitStructure.TIM_OCMode = TIM_OCMode_PWM1;
TIM_OCInitStructure.TIM_OutputState = TIM_OutputState_Enable;
TIM_OCInitStructure.TIM_Pulse = 1;
TIM_OC1Init(TIM3, &TIM_OCInitStructure);
/* Slave Mode selection: TIM3 */
TIM_SelectSlaveMode(TIM3, TIM_SlaveMode_Gated);
TIM_SelectInputTrigger(TIM3, TIM_TS_ITR0);
/* TIM4 Peripheral Configuration ----------------------------------------*/
/* TIM4 Slave Configuration: PWM1 Mode */
TIM_TimeBaseStructure.TIM_Period = 1;
TIM_TimeBaseStructure.TIM_Prescaler = 0;
TIM_TimeBaseStructure.TIM_ClockDivision = 0;
TIM_TimeBaseStructure.TIM_CounterMode = TIM_CounterMode_Up;
TIM_TimeBaseInit(TIM4, &TIM_TimeBaseStructure);
TIM_OCInitStructure.TIM_OCMode = TIM_OCMode_PWM1;
TIM_OCInitStructure.TIM_OutputState = TIM_OutputState_Enable;
TIM_OCInitStructure.TIM_Pulse = 1;
TIM_OC1Init(TIM4, &TIM_OCInitStructure);
/* Slave Mode selection: TIM4 */
TIM_SelectSlaveMode(TIM4, TIM_SlaveMode_Gated);
TIM_SelectInputTrigger(TIM4, TIM_TS_ITR0);
/* TIM1 Peripheral Configuration ----------------------------------------*/
/* Time Base configuration */
TIM_TimeBaseStructure.TIM_Prescaler = 0;
TIM_TimeBaseStructure.TIM_CounterMode = TIM_CounterMode_Up;
TIM_TimeBaseStructure.TIM_Period = 255;
TIM_TimeBaseStructure.TIM_ClockDivision = 0;
TIM_TimeBaseStructure.TIM_RepetitionCounter = 4;
TIM_TimeBaseInit(TIM1, &TIM_TimeBaseStructure);
/* Channel 1 Configuration in PWM mode */
TIM_OCInitStructure.TIM_OCMode = TIM_OCMode_PWM2;
TIM_OCInitStructure.TIM_OutputState = TIM_OutputState_Enable;
TIM_OCInitStructure.TIM_OutputNState = TIM_OutputNState_Enable;
TIM_OCInitStructure.TIM_Pulse = 127;
TIM_OCInitStructure.TIM_OCPolarity = TIM_OCPolarity_Low;
TIM_OCInitStructure.TIM_OCNPolarity = TIM_OCNPolarity_Low;
TIM_OCInitStructure.TIM_OCIdleState = TIM_OCIdleState_Set;
TIM_OCInitStructure.TIM_OCNIdleState = TIM_OCIdleState_Reset;
TIM_OC1Init(TIM1, &TIM_OCInitStructure);
/* Automatic Output enable, Break, dead time and lock configuration*/
TIM_BDTRInitStructure.TIM_OSSRState = TIM_OSSRState_Enable;
TIM_BDTRInitStructure.TIM_OSSIState = TIM_OSSIState_Enable;
TIM_BDTRInitStructure.TIM_LOCKLevel = TIM_LOCKLevel_1;
TIM_BDTRInitStructure.TIM_DeadTime = 5;
TIM_BDTRInitStructure.TIM_Break = TIM_Break_Disable;
TIM_BDTRInitStructure.TIM_BreakPolarity = TIM_BreakPolarity_High;
TIM_BDTRInitStructure.TIM_AutomaticOutput = TIM_AutomaticOutput_Disable;
TIM_BDTRConfig(TIM1, &TIM_BDTRInitStructure);
/* Master Mode selection */
TIM_SelectOutputTrigger(TIM1, TIM_TRGOSource_Update);
/* Select the Master Slave Mode */
TIM_SelectMasterSlaveMode(TIM1, TIM_MasterSlaveMode_Enable);
/* TIM1 counter enable */
TIM_Cmd(TIM1, ENABLE);
/* TIM enable counter */
TIM_Cmd(TIM3, ENABLE);
TIM_Cmd(TIM4, ENABLE);
/* Main Output Enable */
TIM_CtrlPWMOutputs(TIM1, ENABLE);
while (1)
{}
}
/**
* @brief Configures the different system clocks.
* @param None
* @retval None
*/
void RCC_Configuration(void)
{
/* TIM1, GPIOA and GPIOB clock enable */
RCC_APB2PeriphClockCmd(RCC_APB2Periph_TIM1 | RCC_APB2Periph_GPIOA | RCC_APB2Periph_GPIOE |
RCC_APB2Periph_GPIOC | RCC_APB2Periph_GPIOB | RCC_APB2Periph_AFIO, ENABLE);
/* TIM3 and TIM4 clock enable */
RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM3 | RCC_APB1Periph_TIM4, ENABLE);
}
/**
* @brief Configures TIM1, TIM3 and TIM4 Pins.
* @param None
* @retval None
*/
void GPIO_Configuration(void)
{
GPIO_InitTypeDef GPIO_InitStructure;
#ifdef STM32F10X_CL
/* GPIOC Configuration: TIM3 channel1 as alternate function push-pull */
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_6;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP;
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
GPIO_Init(GPIOC, &GPIO_InitStructure);
GPIO_PinRemapConfig(GPIO_FullRemap_TIM3, ENABLE);
/* GPIOE Configuration: TIM1 channel1 as alternate function push-pull */
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_8;
GPIO_Init(GPIOE, &GPIO_InitStructure);
GPIO_PinRemapConfig(GPIO_FullRemap_TIM1, ENABLE);
#else
/* GPIOA Configuration: TIM1 Channel1 and TIM3 Channel1 as alternate function push-pull */
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_6 | GPIO_Pin_8;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP;
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
GPIO_Init(GPIOA, &GPIO_InitStructure);
#endif
/* GPIOB Configuration: TIM4 Channel1 as alternate function push-pull */
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_6;
GPIO_Init(GPIOB, &GPIO_InitStructure);
}
#ifdef USE_FULL_ASSERT
/**
* @brief Reports the name of the source file and the source line number
* where the assert_param error has occurred.
* @param file: pointer to the source file name
* @param line: assert_param error line source number
* @retval None
*/
void assert_failed(uint8_t* file, uint32_t line)
{
/* User can add his own implementation to report the file name and line number,
ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */
while (1)
{}
}
#endif
/**
* @}
*/
/**
* @}
*/
/******************* (C) COPYRIGHT 2011 STMicroelectronics *****END OF FILE****/
回复:TIM1为何没有PWM输出【悬赏问答】
怎么会没有呢??楼上那么多例子
RE:TIM1为何没有PWM输出【悬赏问答】
RE:TIM1为何没有PWM输出【悬赏问答】