你的浏览器版本过低,可能导致网站不能正常访问!
为了你能正常使用网站功能,请使用这些浏览器。

STM32L4R5ZI FFT 1024点速度测试

[复制链接]
pythonworld 提问时间:2018-2-23 15:20 /
本帖最后由 pythonworld 于 2018-2-23 15:52 编辑

      最近Atollic TrueSTUDIO 免费了,于是使用IDE Atollic TrueSTUDIO for STM32测试一下STM32L4R5ZI 的浮点运算能力。使用arm dsp lib中的FFT函数做1000次1024点记录运行时间,系统时钟设置为120MHz结果如下, 每次大约耗时6.343毫秒。比较STM32L4R5ZI的core mark值貌似速度不快。之前测试L432只用1.352毫秒,不知道是什么原因。L432 FFT 测试结果
附件是HEX文件,串口参数如下:
    hlpuart1.Init.BaudRate = 209700;
    hlpuart1.Init.WordLength = UART_WORDLENGTH_7B;
    hlpuart1.Init.StopBits = UART_STOPBITS_1;
    hlpuart1.Init.Parity = UART_PARITY_NONE;
    hlpuart1.Init.Mode = UART_MODE_TX_RX;
    hlpuart1.Init.HwFlowCtl = UART_HWCONTROL_NONE;
    hlpuart1.Init.OneBitSampling = UART_ONE_BIT_SAMPLE_DISABLE;
    hlpuart1.Init.ClockPrescaler = UART_PRESCALER_DIV1;
    hlpuart1.AdvancedInit.AdvFeatureInit = UART_ADVFEATURE_NO_INIT;
    hlpuart1.FifoMode = UART_FIFOMODE_DISABLE;
新的板子总会有坑,使用前务必先升级相关的软件尽管我都升级了,但是测试过程中还是遇到了一个坑,直接使用Cube MX设置的时钟居然程序不能运行,没有详细研究什么原因。自己设置使用内部时钟后程序才正常运行。下面时有问题的时钟的设置,不知道是否是有遇到同样问题的网友。另外,个人觉得Atollic TrueSTUDIO还是很好用的,当然最好仔细看看软件带的使用手册。
    /**Initializes the CPU, AHB and APB busses clocks
    */
  RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSE;
  RCC_OscInitStruct.HSEState = RCC_HSE_BYPASS;
  RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
  RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE;
  RCC_OscInitStruct.PLL.PLLN = 30;
  RCC_OscInitStruct.PLL.PLLP = RCC_PLLP_DIV2;
  RCC_OscInitStruct.PLL.PLLQ = RCC_PLLQ_DIV2;
  RCC_OscInitStruct.PLL.PLLR = RCC_PLLR_DIV2;
  if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
  {
    _Error_Handler(__FILE__, __LINE__);
  }

screen

screen

L4R5.zip

下载

68.12 KB, 下载次数: 10, 下载积分: ST金币 -1

HEX +BIN

收藏 评论5 发布时间:2018-2-23 15:20

举报

5个回答
zhao.zhao 回答时间:2018-2-23 15:30:45
是个坑,HEX文件
斜阳 回答时间:2018-2-24 08:42:48
楼主要不要把工程文件传上来???
pythonworld 回答时间:2018-2-24 18:30:34
斜阳__ 发表于 2018-2-24 08:42
楼主要不要把工程文件传上来???

工程文件太大了,就不上传了,附上main.c文件。
/**
******************************************************************************
* @file           : main.c
* @brief          : Main program body
******************************************************************************
** This notice applies to any and all portions of this file
* that are not between comment pairs USER CODE BEGIN and
* USER CODE END. Other portions of this file, whether
* inserted by the user or by software development tools
* are owned by their respective copyright owners.
*
* COPYRIGHT(c) 2018 STMicroelectronics
*
* Redistribution and use in source and binary forms, with or without modification,
* are permitted provided that the following conditions are met:
*   1. Redistributions of source code must retain the above copyright notice,
*      this list of conditions and the following disclaimer.
*   2. Redistributions in binary form must reproduce the above copyright notice,
*      this list of conditions and the following disclaimer in the documentation
*      and/or other materials provided with the distribution.
*   3. Neither the name of STMicroelectronics nor the names of its contributors
*      may be used to endorse or promote products derived from this software
*      without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
******************************************************************************
*/
/* Includes ------------------------------------------------------------------*/
#include "main.h"
#include "stm32l4xx_hal.h"

/* USER CODE BEGIN Includes */

#include "arm_math.h"
#include "arm_const_structs.h"
#include "stdio.h"
#include "string.h"
//#include "errno.h"

#define TEST_LENGTH_SAMPLES 2048
/* USER CODE END Includes */

/* Private variables ---------------------------------------------------------*/
UART_HandleTypeDef hlpuart1;
UART_HandleTypeDef huart3;

PCD_HandleTypeDef hpcd_USB_OTG_FS;

/* USER CODE BEGIN PV */

/* Private variables ---------------------------------------------------------*/
/* -------------------------------------------------------------------
* External Input and Output buffer Declarations for FFT Bin Example
* ------------------------------------------------------------------- */
extern float32_t testInput_f32_10khz[TEST_LENGTH_SAMPLES];
static float32_t testOutput[TEST_LENGTH_SAMPLES / 2];
float32_t testInput_f32_10khz_fixed[TEST_LENGTH_SAMPLES];
/* ------------------------------------------------------------------
* Global variables for FFT Bin Example
* ------------------------------------------------------------------- */
uint32_t fftSize = 1024;
uint32_t ifftFlag = 0;
uint32_t doBitReverse = 1;

/* Reference index at which max energy of bin ocuurs */
uint32_t refIndex = 213, testIndex = 0;
int err = 0;

/* USER CODE END PV */

/* Private function prototypes -----------------------------------------------*/
void SystemClock_Config(void);
static void MX_GPIO_Init(void);
static void MX_LPUART1_UART_Init(void);
static void MX_USART3_UART_Init(void);
static void MX_USB_OTG_FS_PCD_Init(void);

/* USER CODE BEGIN PFP */
/* Private function prototypes -----------------------------------------------*/
//int * __errno(void);
void copydata(uint8_t direction);

/* USER CODE END PFP */

/* USER CODE BEGIN 0 */

/* USER CODE END 0 */

/**
* @brief  The application entry point.
*
* @retval None
*/
int main(void) {
        /* USER CODE BEGIN 1 */

        arm_status status;
        float32_t maxValue;

        status = ARM_MATH_SUCCESS;
        __IO int32_t timer = 0, timer1 = 0, timer2 = 0;

        /* USER CODE END 1 */

        /* MCU Configuration----------------------------------------------------------*/

        /* Reset of all peripherals, Initializes the Flash interface and the Systick. */
        HAL_Init();

        /* USER CODE BEGIN Init */

        /* USER CODE END Init */

        /* Configure the system clock */
        SystemClock_Config();

        /* USER CODE BEGIN SysInit */

        /* USER CODE END SysInit */

        /* Initialize all configured peripherals */
        MX_GPIO_Init();
        MX_LPUART1_UART_Init();
        MX_USART3_UART_Init();
//        MX_USB_OTG_FS_PCD_Init();
        /* USER CODE BEGIN 2 */
        copydata(0);
        /* Process the data through the CFFT/CIFFT module */

        arm_cfft_f32(&arm_cfft_sR_f32_len1024, testInput_f32_10khz, ifftFlag,
                        doBitReverse);

        /* Process the data through the Complex Magnitude Module for
         calculating the magnitude at each bin */
        arm_cmplx_mag_f32(testInput_f32_10khz, testOutput, fftSize);

        /* Calculates maxValue and returns corresponding BIN value */
        arm_max_f32(testOutput, fftSize, &maxValue, &testIndex);

        if (testIndex != refIndex) {
                status = ARM_MATH_TEST_FAILURE;
        }

        /* ----------------------------------------------------------------------
         ** Loop here if the signals fail the PASS check.
         ** This denotes a test failure
         ** ------------------------------------------------------------------- */

        if (status != ARM_MATH_SUCCESS) {
                while (1) {

                }
        }

        /* USER CODE END 2 */

        /* Infinite loop */
        /* USER CODE BEGIN WHILE */
        while (1) {

                /* USER CODE END WHILE */

                /* USER CODE BEGIN 3 */

                __IO uint16_t i;
                timer = HAL_GetTick();
                for (i = 0; i < 1000; i++) {

                        arm_cfft_f32(&arm_cfft_sR_f32_len1024, testInput_f32_10khz,
                                        ifftFlag, doBitReverse);

                        /* Process the data through the Complex Magnitude Module for
                         calculating the magnitude at each bin */
//                        arm_cmplx_mag_f32(testInput_f32_10khz, testOutput, fftSize);
                        /* Calculates maxValue and returns corresponding BIN value */
//                        arm_max_f32(testOutput, fftSize, &maxValue, &testIndex);
//                          printf("MaxValue is %f\n",maxValue);
//                          printf("testIndex is %ld\n",testIndex);
//                          printf("refIndex is %ld\n",refIndex);
                        copydata(1);

//                        HAL_GPIO_TogglePin(GPIOB, LD3_Pin);
//                        HAL_GPIO_TogglePin(GPIOB, LD2_Pin);
//                          HAL_Delay(1000);
                }

                timer1 = HAL_GetTick();
                for (i = 0; i < 1000; i++) {
//                        copydata(0);
                        copydata(1);
//                        HAL_GPIO_TogglePin(GPIOB, LD3_Pin);
//                        HAL_GPIO_TogglePin(GPIOB, LD2_Pin);
                }
                timer2 = HAL_GetTick();
                HAL_GPIO_TogglePin(GPIOB, LD2_Pin);
                HAL_GPIO_TogglePin(GPIOB, LD3_Pin);
                printf("Time is %ld ms\n", 2 * timer1 - timer - timer2);

        }
        /* USER CODE END 3 */

}

/**
* @brief System Clock Configuration
* @retval None
*/
void SystemClock_Config(void) {

        RCC_OscInitTypeDef RCC_OscInitStruct;
        RCC_ClkInitTypeDef RCC_ClkInitStruct;
        RCC_PeriphCLKInitTypeDef PeriphClkInit;

        /**Configure the main internal regulator output voltage
         */
        if (HAL_PWREx_ControlVoltageScaling(PWR_REGULATOR_VOLTAGE_SCALE1_BOOST)
                        != HAL_OK) {
                _Error_Handler(__FILE__, __LINE__);
        }

        /**Initializes the CPU, AHB and APB busses clocks
         */
        RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSI48
                        | RCC_OSCILLATORTYPE_MSI;
        RCC_OscInitStruct.HSI48State = RCC_HSI48_ON;
        RCC_OscInitStruct.MSIState = RCC_MSI_ON;
        RCC_OscInitStruct.MSICalibrationValue = 0;
        RCC_OscInitStruct.MSIClockRange = RCC_MSIRANGE_7;
        RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
        RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_MSI;
        RCC_OscInitStruct.PLL.PLLN = 30;
        RCC_OscInitStruct.PLL.PLLP = RCC_PLLP_DIV2;
        RCC_OscInitStruct.PLL.PLLQ = RCC_PLLQ_DIV2;
        RCC_OscInitStruct.PLL.PLLR = RCC_PLLR_DIV2;
        if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK) {
                _Error_Handler(__FILE__, __LINE__);
        }

        /**Initializes the CPU, AHB and APB busses clocks
         */
        RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK | RCC_CLOCKTYPE_SYSCLK
                        | RCC_CLOCKTYPE_PCLK1 | RCC_CLOCKTYPE_PCLK2;
        RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
        RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
        RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV2;
        RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1;

        if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_5) != HAL_OK) {
                _Error_Handler(__FILE__, __LINE__);
        }

        PeriphClkInit.PeriphClockSelection = RCC_PERIPHCLK_USART3
                        | RCC_PERIPHCLK_LPUART1 | RCC_PERIPHCLK_USB;
        PeriphClkInit.Usart3ClockSelection = RCC_USART3CLKSOURCE_PCLK1;
        PeriphClkInit.Lpuart1ClockSelection = RCC_LPUART1CLKSOURCE_PCLK1;
        PeriphClkInit.UsbClockSelection = RCC_USBCLKSOURCE_HSI48;
        if (HAL_RCCEx_PeriphCLKConfig(&PeriphClkInit) != HAL_OK) {
                _Error_Handler(__FILE__, __LINE__);
        }

        /**Configure the Systick interrupt time
         */
        HAL_SYSTICK_Config(HAL_RCC_GetHCLKFreq() / 1000);

        /**Configure the Systick
         */
        HAL_SYSTICK_CLKSourceConfig(SYSTICK_CLKSOURCE_HCLK);

        /* SysTick_IRQn interrupt configuration */
        HAL_NVIC_SetPriority(SysTick_IRQn, 0, 0);
}

/* LPUART1 init function */
static void MX_LPUART1_UART_Init(void) {

        hlpuart1.Instance = LPUART1;
        hlpuart1.Init.BaudRate = 209700;
        hlpuart1.Init.WordLength = UART_WORDLENGTH_7B;
        hlpuart1.Init.StopBits = UART_STOPBITS_1;
        hlpuart1.Init.Parity = UART_PARITY_NONE;
        hlpuart1.Init.Mode = UART_MODE_TX_RX;
        hlpuart1.Init.HwFlowCtl = UART_HWCONTROL_NONE;
        hlpuart1.Init.OneBitSampling = UART_ONE_BIT_SAMPLE_DISABLE;
        hlpuart1.Init.ClockPrescaler = UART_PRESCALER_DIV1;
        hlpuart1.AdvancedInit.AdvFeatureInit = UART_ADVFEATURE_NO_INIT;
        hlpuart1.FifoMode = UART_FIFOMODE_DISABLE;
        if (HAL_UART_Init(&hlpuart1) != HAL_OK) {
                _Error_Handler(__FILE__, __LINE__);
        }

        if (HAL_UARTEx_SetTxFifoThreshold(&hlpuart1, UART_TXFIFO_THRESHOLD_1_8)
                        != HAL_OK) {
                _Error_Handler(__FILE__, __LINE__);
        }

        if (HAL_UARTEx_SetRxFifoThreshold(&hlpuart1, UART_RXFIFO_THRESHOLD_1_8)
                        != HAL_OK) {
                _Error_Handler(__FILE__, __LINE__);
        }

}

/* USART3 init function */
static void MX_USART3_UART_Init(void) {

        huart3.Instance = USART3;
        huart3.Init.BaudRate = 115200;
        huart3.Init.WordLength = UART_WORDLENGTH_7B;
        huart3.Init.StopBits = UART_STOPBITS_1;
        huart3.Init.Parity = UART_PARITY_NONE;
        huart3.Init.Mode = UART_MODE_TX_RX;
        huart3.Init.HwFlowCtl = UART_HWCONTROL_NONE;
        huart3.Init.OverSampling = UART_OVERSAMPLING_16;
        huart3.Init.OneBitSampling = UART_ONE_BIT_SAMPLE_DISABLE;
        huart3.Init.ClockPrescaler = UART_PRESCALER_DIV1;
        huart3.AdvancedInit.AdvFeatureInit = UART_ADVFEATURE_NO_INIT;
        if (HAL_UART_Init(&huart3) != HAL_OK) {
                _Error_Handler(__FILE__, __LINE__);
        }

        if (HAL_UARTEx_SetTxFifoThreshold(&huart3, UART_TXFIFO_THRESHOLD_1_8)
                        != HAL_OK) {
                _Error_Handler(__FILE__, __LINE__);
        }

        if (HAL_UARTEx_SetRxFifoThreshold(&huart3, UART_RXFIFO_THRESHOLD_1_8)
                        != HAL_OK) {
                _Error_Handler(__FILE__, __LINE__);
        }

        if (HAL_UARTEx_DisableFifoMode(&huart3) != HAL_OK) {
                _Error_Handler(__FILE__, __LINE__);
        }

}

/* USB_OTG_FS init function */
static void MX_USB_OTG_FS_PCD_Init(void) {

        hpcd_USB_OTG_FS.Instance = USB_OTG_FS;
        hpcd_USB_OTG_FS.Init.dev_endpoints = 6;
        hpcd_USB_OTG_FS.Init.ep0_mps = DEP0CTL_MPS_64;
        hpcd_USB_OTG_FS.Init.phy_itface = PCD_PHY_EMBEDDED;
        hpcd_USB_OTG_FS.Init.Sof_enable = ENABLE;
        hpcd_USB_OTG_FS.Init.low_power_enable = DISABLE;
        hpcd_USB_OTG_FS.Init.lpm_enable = DISABLE;
        hpcd_USB_OTG_FS.Init.battery_charging_enable = ENABLE;
        hpcd_USB_OTG_FS.Init.use_dedicated_ep1 = DISABLE;
        hpcd_USB_OTG_FS.Init.vbus_sensing_enable = ENABLE;
        if (HAL_PCD_Init(&hpcd_USB_OTG_FS) != HAL_OK) {
                _Error_Handler(__FILE__, __LINE__);
        }

}

/** Configure pins as
* Analog
* Input
* Output
* EVENT_OUT
* EXTI
*/
static void MX_GPIO_Init(void) {

        GPIO_InitTypeDef GPIO_InitStruct;

        /* GPIO Ports Clock Enable */
        __HAL_RCC_GPIOC_CLK_ENABLE()
        ;
        __HAL_RCC_GPIOH_CLK_ENABLE()
        ;
        __HAL_RCC_GPIOB_CLK_ENABLE()
        ;
        __HAL_RCC_GPIOD_CLK_ENABLE()
        ;
        __HAL_RCC_GPIOG_CLK_ENABLE()
        ;
        HAL_PWREx_EnableVddIO2();
        __HAL_RCC_GPIOA_CLK_ENABLE()
        ;

        /*Configure GPIO pin Output Level */
        HAL_GPIO_WritePin(GPIOB, LD3_Pin | LD2_Pin, GPIO_PIN_RESET);

        /*Configure GPIO pin Output Level */
        HAL_GPIO_WritePin(USB_PowerSwitchOn_GPIO_Port, USB_PowerSwitchOn_Pin,
                        GPIO_PIN_RESET);

        /*Configure GPIO pin : B1_Pin */
        GPIO_InitStruct.Pin = B1_Pin;
        GPIO_InitStruct.Mode = GPIO_MODE_IT_RISING;
        GPIO_InitStruct.Pull = GPIO_NOPULL;
        HAL_GPIO_Init(B1_GPIO_Port, &GPIO_InitStruct);

        /*Configure GPIO pins : LD3_Pin LD2_Pin */
        GPIO_InitStruct.Pin = LD3_Pin | LD2_Pin;
        GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
        GPIO_InitStruct.Pull = GPIO_NOPULL;
        GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
        HAL_GPIO_Init(GPIOB, &GPIO_InitStruct);

        /*Configure GPIO pin : USB_PowerSwitchOn_Pin */
        GPIO_InitStruct.Pin = USB_PowerSwitchOn_Pin;
        GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
        GPIO_InitStruct.Pull = GPIO_NOPULL;
        GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
        HAL_GPIO_Init(USB_PowerSwitchOn_GPIO_Port, &GPIO_InitStruct);

        /*Configure GPIO pin : USB_OverCurrent_Pin */
        GPIO_InitStruct.Pin = USB_OverCurrent_Pin;
        GPIO_InitStruct.Mode = GPIO_MODE_INPUT;
        GPIO_InitStruct.Pull = GPIO_NOPULL;
        HAL_GPIO_Init(USB_OverCurrent_GPIO_Port, &GPIO_InitStruct);

}

/* USER CODE BEGIN 4 */

//int * __errno(void) {
//        return &err;
//}
void copydata(uint8_t direction) {
        uint32_t i;
        if (direction == 0) {
                for (i = 0; i < TEST_LENGTH_SAMPLES; i++)
                        testInput_f32_10khz_fixed = testInput_f32_10khz;
        } else {
                for (i = 0; i < TEST_LENGTH_SAMPLES; i++)
                        testInput_f32_10khz = testInput_f32_10khz_fixed;
        }
}

/* USER CODE END 4 */

/**
* @brief  This function is executed in case of error occurrence.
* @param  file: The file name as string.
* @param  line: The line in file as a number.
* @retval None
*/
void _Error_Handler(char *file, int line) {
        /* USER CODE BEGIN Error_Handler_Debug */
        /* User can add his own implementation to report the HAL error return state */
        while (1) {
        }
        /* USER CODE END Error_Handler_Debug */
}

#ifdef  USE_FULL_ASSERT
/**
* @brief  Reports the name of the source file and the source line number
*         where the assert_param error has occurred.
* @param  file: pointer to the source file name
* @param  line: assert_param error line source number
* @retval None
*/
void assert_failed(uint8_t* file, uint32_t line)
{
        /* USER CODE BEGIN 6 */
        /* User can add his own implementation to report the file name and line number,
         tex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */
        /* USER CODE END 6 */
}
#endif /* USE_FULL_ASSERT */

/**
* @}
*/

/**
* @}
*/

/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/
斜阳 回答时间:2018-2-27 09:26:03
你用的是哪一块板子说明白,如果是自己做的检查晶振。把修改的东西发出来。
ps:去掉生成文件后工程很小。

下面是NUCLEO-L4R5ZI的原理图的一部分,看了一下,晶振是默认断开的。



pythonworld 回答时间:2018-2-27 18:26:42
本帖最后由 pythonworld 于 2018-2-27 18:29 编辑
斜阳__ 发表于 2018-2-27 09:26
你用的是哪一块板子说明白,如果是自己做的检查晶振。把修改的东西发出来。
ps:去掉生成文件后工程很小。

你说的对,我仔细看了一下Nucleo板的电路图外部晶振没有焊接,而且和ST-link连接的MCO的锡桥也是断开的。非常感谢!
我以为和其他Nucleo板一样ST-link 为板子提供外部时钟呢,没仔细看电路图。
RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSE; Cube MX默认生成的是使用外部高速时钟,更改时钟设置后可以运行了。
RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSI48// 使用高速内部时钟。
                        | RCC_OSCILLATORTYPE_MSI;
        RCC_OscInitStruct.HSI48State = RCC_HSI48_ON;
        RCC_OscInitStruct.MSIState = RCC_MSI_ON;

电路图

电路图

所属标签

相似问题

官网相关资源

关于
我们是谁
投资者关系
意法半导体可持续发展举措
创新与技术
意法半导体官网
联系我们
联系ST分支机构
寻找销售人员和分销渠道
社区
媒体中心
活动与培训
隐私策略
隐私策略
Cookies管理
行使您的权利
官方最新发布
STM32Cube扩展软件包
意法半导体边缘AI套件
ST - 理想汽车豪华SUV案例
ST意法半导体智能家居案例
STM32 ARM Cortex 32位微控制器
关注我们
st-img 微信公众号
st-img 手机版