
特性 6: 快速响应时间 电阻等效电路,如图 13,组合了电阻电感和电容,电阻可以被看作R/C电路,滤波器或者电感,取决于它们的几何形状。线绕电阻,电抗由线圈和绕线形成的螺旋空隙产生。图14说明由于持续增加绕线圈数以增加阻值,引起电容和电感的增加 。这种组装科技试图减小线绕电阻的电感,但是效果有限。另一方面,在平面形的电阻中,比如Bulk Metal® Foil金属箔电阻,电阻路径图案有意设计成为平行的几何直线以抵消电抗。 图15说明一种典型的蛇形的平面电阻阻值路径图 。临近的反方向电流较小了相互的电感,也减小了电容。 ![]() 电感和电容对工作频率产生成比例的电抗,它改变了电阻的效果和电流与电压在电路中的相位。 电感和电容产生的电抗会干扰输入信号,尤其在脉冲设备里. 图16 电流对电压脉冲响应的比较。金属箔电阻的响应很快,线绕电阻响应慢。 这里脉冲宽度是十亿分之一秒,图上已显示线绕电阻会使信号严重失真,金属箔电阻分段完全再现了信号。 在频率设备中, 这种扭曲反应会引起明显的阻值改变(阻抗)并引起频率改变。图17 说明金属箔电阻的在不同频率下交流阻抗对直流阻抗的曲线。金属箔电阻 在100Ω范围内,频率100M,具有很好的响应。1M频率内所有阻值金属箔电阻都具有很好的响应。其他科技电阻的性能曲线比金属箔电阻的曲线会更偏移。(特别是线绕电阻)。 ![]() 由于声音再现的需求越来越多,电路元件的选择变得更为严格,信号线路中的电阻选择更关键。基于低水平输入信号和高增益放大器的测量仪器在测量微伏特范围的信号时,不能接受微伏特水平的背景噪音。尽管音频电路,信号的纯正最重要,很明显的要使用无噪音的电子元件。其他工业和科技也同样关注这个特性。 电阻由于它自身的结构,可以是噪音来源。这种无意的信号增加是可以测量的并且独立于已经存在的基本信号。图19和图20电阻噪音对基本信号的作用。由可导性的材料黏合在绝缘基质材料中制造的电阻最容易产生噪音。碳膜电阻和厚膜电阻, 电流传导发生在基质材料和电阻材料之间的接触点,这些接触点对电流传导产生很大的阻碍作用,是噪音的来源。这些位置对任何因不匹配产生的形变,潮湿产生的变形,机械应力,和电压输入水平都很敏感。在电流通过基质时,对这些外部影响的响应是不需要的信号。图20说明电流路径。 ![]() 金属合金制成的电阻, 比如金属箔电阻, 产生的噪音最小。电流通过金属合金的内部微粒边界导通电路。微粒间的电流路径经过一个或者更多的金属晶体包括多层,更长的路径穿过分界线,减少了噪音产生的几率。图22说明电流路径。 另外,金属箔电阻的光刻和制造科技使箔电阻具有比其他电阻结构更一致的电流路径。螺旋形结构的电阻,会有更大的几何形变,产生更多的噪音信号。金属箔电阻比其他科技的电阻有最低的噪音。金属箔电阻的噪音水平几乎无法测出。通过选择电阻,前置放大器可以获得纯正的信号。威士金属箔电阻为低噪音音频产品提供最佳的性能。 ![]() 特性 8: 热电势 EMF 两个不同的金属连接,加热会产生电压,因为金属的感应水平不同。这种由温度引起的电测压力,称为热电势,通常以微伏特表示。热电势的一个有利作用是用热电偶和微伏特记测量温度。 在电阻中, 热电势被认为是对纯电阻的寄生干扰。(特别是对低阻值直流电阻)。经常是由于电阻结构中的不同材料产生,特别是在电阻材料和引脚材料的连接点上。电阻的热电势性能可以通过两个连接点之间的内部温度。电阻材料上不对称的功率分布, 金属材料分子复杂的活动差异降低。 威士金属箔电阻的其中一个特点是低热电势设计。扁平的桨状引脚(直插设计)紧密的连接电阻箔片,由此热传导最大化,温度变动最小,金属箔电阻设计成消除功率而不产生热点效应,引脚材料跟电阻材料协调.这些设计做出低热电势的电阻。 图23 和图 24 各种特殊设计使金属箔电阻具有极低的热电势。 ![]() ![]() 理由 9: 静电放电负荷 (ESD) 静电放电负荷(ESD)定义为 不同电势的物体之间快速地转移电荷–无论是直接接触,电弧或者电磁感应–趋向于达到电势平衡。人体感应的静电放电负荷 ESD 是 3000 V, 所以任何超过这个电压的静电放电负荷都可被人体感觉到。因为持续的高压伏特数小于一百万分之一秒,人体的体积较大,这种能量在人体很快传播,变得很小。对人体来说,静电放电负荷是无害的。但是这种静电放电负荷通过很小的电子元件时,相对的能量比较密集,3000V甚至500V的静电放电符合足以破坏很多电子元件。 静电放电负荷的危害一般分为3种: ● 参数失效–静电放电负荷 ESD事件可能改变电子元件的阻值,引起电阻阻值精度漂移。.这种危害不会直接影响电阻功能,因此参数失效可能存在于正常工作的电阻。 ● 灾难性的破坏–静电放电负荷 ESD事件引起电子元件立即停止工作, 这个可能发生在几个静电放电负荷脉冲之后,可能是有很多原因造成,比如人体静电放电负荷或者仅仅是原来存在的静电。 ● 潜在的损坏–静电放电负荷 ESD事件电子元件未被察觉的中度的损坏,电子元件还能正常工作.尽管如此,电子元件的负载寿命已经极大的减少,因为后续工作期间的应力可能引起电子元件更多的损害,使电子元件在寿命期间失效,这种潜在的损坏是最需要关注的,因为这种损坏不能被察觉或者测量出来。 电阻对静电的敏感跟它的体积有关,体积越小的电阻,分散静电脉冲能量的空间越小。区域的电阻材料上的这种能量集中会产生热量上升,导致不可逆转的破坏。日益增长的小型化的趋势,电子元件,包括电阻, 使得它们更容易受到静电损害。因此,Bulk Metal® foil金属精密箔电阻的比薄膜电阻在抗静电方面更有优势,主要由于金属箔电阻的电阻材料更厚,(金属箔比薄膜厚100倍)因此金属箔比薄膜的耐热能力更高。 薄膜电阻材料是由微粒构成。(通过蒸发或者喷溅工艺), 金属箔合金类似于晶体结构,通过热和冷的揉压工艺制作。 测试证明,贴片金属箔电阻能够抗静电至少25,000 V (有资料证明), 薄膜和厚膜贴片电阻只能抗3000 V 静电(实际的数据可能更低)。如果设备要求使用抗巨大静电脉冲电压的电阻,金属箔电阻是最好的选择。 特性 10: 测不到的电压系数 正如我们在电阻噪音部分提到的,电阻阻值可能由于加载电压而改变。电压系数描述阻值对电压的变化而改变的情况。不同结构的电阻有不同的电压系数。举个比较极端的例子,电压系数的作用在碳膜电阻中很显著,阻值会随着加载电压变化而发生明显改变。Bulk Metal® Foil 金属箔电阻材料对电压波动不敏感,设计人员可以依靠箔电阻在各种电压水平的电路中取得相同的阻值。金属箔电阻合金固有的性能提供技术不能测量的电压系数。 一个电阻集中所有特性 10个技术理由详细介绍了箔电阻内在的特殊设计,而非制作工艺或筛选方式。这种特殊性能的组合是其他电阻科技不具备的。 |