
[导读] 本文来解析一个盆友在使用STM32采集电池电压踩过的坑。以STM32F4 的ADC属于逐次逼近SAR 型ADC为例进行分析,参考STM32F405xx Datasheet,对于如何编写ADC程序就不做描述了。8 a$ q; P1 x' e; k+ n% W ![]() ![]()
盆友咨询我这是为什么?我给出了建议,先卖个关子,先来看看应用最为广泛的STM32单片机的一些特性。 STM32 ADC:STM32 12位ADC是逐次逼近型的模数转换器。它有多达19个多路复用通道,允许它测量来自16个外部源、2个内部源和VBAT通道的信号。通道的A/D转换可以在单次、连续、扫描或间断模式下进行。ADC的结果存储在左对齐或右对齐的16位数据寄存器中。模拟看门狗功能允许应用程序检测输入电压是否超过用户定义的、更高或更低的阈值。 主要功能,具体操作,怎么编程这些细节,有大量的资料就不罗嗦了,主要来看看电气特性。 电气特性![]()
![]() 上面的公式用于确定误差小于1/4 LSB时允许的最大外阻抗。N = 12(12位分辨率),k是在ADC_SMPR1寄存器中定义的采样周期数。
![]()
![]() 回到坑里 将盆友的电路等效绘制一下,忽略ADC采样通道内部ESD保护二极管,以及等效电流源,如下图: ![]() 好了,这图一画出来,问题的原因就显而易见了,SAR ADC是将采样电容上的电压通过逐次逼近原理转换为数字量的,按上述图,由于R2为兆级电阻,那么等效加载在采样电容上的电压就不能简单的看成是R1/R2的分压了,此时ADC的输入阻抗在百50K欧级别,简化定性看一下,忽略分布电容影响,计算方便将输入阻抗看成50K直流电阻(实际深入动态分析的话则不可忽略,假定电池电压为5V),具体计算就不做了。 为什么电阻选这么大呢?我想估计是为了将电池电压监控取样回路的电流降低,以节省电量。 跳出坑里怎么办呢?我觉得这样应该可以: ![]() 找一个低功耗的运放做一个阻抗变换就可以兼顾两者需求,当然如果更完善一点,还可以考虑串入一个RC低通滤波环节,可以有效降低噪声。 总结一下对于单片机ADC的使用,个人总结了这几点:
至此,我想要写的关于ADC的笔记文章就暂时总结分享到此了,如果觉得本文有价值,在看转发起来,也算对我的肯定支持。 |
多谢分享。这个问题困扰了很多新手啊。 |
谢谢楼主。 |