
switch...case与if...else的根本区别 switch...case会生成一个跳转表来指示实际的case分支的地址,而这个跳转表的索引号与switch变量的值是相等的。从而,switch...case不用像if...else那样遍历条件分支直到命中条件,而只需访问对应索引号的表项从而到达定位分支的目的。 具体地说,switch...case会生成一份大小(表项数)为最大case常量+1的跳表,程序首先判断switch变量是否大于最大case 常量,若大于,则跳到default分支处理;否则取得索引号为switch变量大小的跳表项的地址(即跳表的起始地址+表项大小*索引号),程序接着跳到此地址执行,到此完成了分支的跳转。 第一步,写一个demo程序:foo.c#include <stdio.h>static int foo_ifelse(char c) { if (c == '0' || c == '1') { c += 1; } else if (c == 'a' || c == 'b') { c += 2; } else if (c == 'A' || c == 'B') { c += 3; } else { c += 4; } return (c); } static int foo_switch(char c) { switch (c) { case '1': case '0': c += 1; break; case 'b': case 'a': c += 2; break; case 'B': case 'A': c += 3; break; default: c += 4; break; } return (c); } int main(int argc, char **argv) { int m1 = foo_ifelse('0'); int m2 = foo_ifelse('1'); int n1 = foo_switch('a'); int n2 = foo_switch('b'); (void) printf("%c %c %c %c\n", m1, m2, n1, n2); return (0); } 第二步,在Ubuntu上使用gcc编译 $ gcc -g -o foo foo.c 第三步,使用gdb对二进制文件foo反汇编 (使用intel语法)o 反汇编foo_ifelse()(gdb) set disassembly-flavor intel (gdb) disas /m foo_ifelse Dump of assembler code for function foo_ifelse: 4 { 0x0804841d <+0>: push ebp 0x0804841e <+1>: mov ebp,esp 0x08048420 <+3>: sub esp,0x4 0x08048423 <+6>: mov eax,DWORD PTR [ebp+0x8] 0x08048426 <+9>: mov BYTE PTR [ebp-0x4],al 5 if (c == '0' || c == '1') { 0x08048429 <+12>: cmp BYTE PTR [ebp-0x4],0x30 0x0804842d <+16>: je 0x8048435 <foo_ifelse+24> 0x0804842f <+18>: cmp BYTE PTR [ebp-0x4],0x31 0x08048433 <+22>: jne 0x8048441 <foo_ifelse+36> 6 c += 1; 0x08048435 <+24>: movzx eax,BYTE PTR [ebp-0x4] 0x08048439 <+28>: add eax,0x1 0x0804843c <+31>: mov BYTE PTR [ebp-0x4],al 0x0804843f <+34>: jmp 0x804847b <foo_ifelse+94> 7 } else if (c == 'a' || c == 'b') { 0x08048441 <+36>: cmp BYTE PTR [ebp-0x4],0x61 0x08048445 <+40>: je 0x804844d <foo_ifelse+48> 0x08048447 <+42>: cmp BYTE PTR [ebp-0x4],0x62 0x0804844b <+46>: jne 0x8048459 <foo_ifelse+60> 8 c += 2; 0x0804844d <+48>: movzx eax,BYTE PTR [ebp-0x4] 0x08048451 <+52>: add eax,0x2 0x08048454 <+55>: mov BYTE PTR [ebp-0x4],al 0x08048457 <+58>: jmp 0x804847b <foo_ifelse+94> 9 } else if (c == 'A' || c == 'B') { 0x08048459 <+60>: cmp BYTE PTR [ebp-0x4],0x41 0x0804845d <+64>: je 0x8048465 <foo_ifelse+72> 0x0804845f <+66>: cmp BYTE PTR [ebp-0x4],0x42 0x08048463 <+70>: jne 0x8048471 <foo_ifelse+84> 10 c += 3; 0x08048465 <+72>: movzx eax,BYTE PTR [ebp-0x4] 0x08048469 <+76>: add eax,0x3 0x0804846c <+79>: mov BYTE PTR [ebp-0x4],al 0x0804846f <+82>: jmp 0x804847b <foo_ifelse+94> 11 } else { 12 c += 4; 0x08048471 <+84>: movzx eax,BYTE PTR [ebp-0x4] 0x08048475 <+88>: add eax,0x4 0x08048478 <+91>: mov BYTE PTR [ebp-0x4],al 13 } 14 15 return (c); 0x0804847b <+94>: movsx eax,BYTE PTR [ebp-0x4] 16 } 0x0804847f <+98>: leave 0x08048480 <+99>: ret End of assembler dump. (gdb)o 反汇编foo_ifelse() (gdb) set disassembly-flavor intel (gdb) disas /m foo_ifelse Dump of assembler code for function foo_ifelse: 4 { 0x0804841d <+0>: push ebp 0x0804841e <+1>: mov ebp,esp 0x08048420 <+3>: sub esp,0x4 0x08048423 <+6>: mov eax,DWORD PTR [ebp+0x8] 0x08048426 <+9>: mov BYTE PTR [ebp-0x4],al 5 if (c == '0' || c == '1') { 0x08048429 <+12>: cmp BYTE PTR [ebp-0x4],0x30 0x0804842d <+16>: je 0x8048435 <foo_ifelse+24> 0x0804842f <+18>: cmp BYTE PTR [ebp-0x4],0x31 0x08048433 <+22>: jne 0x8048441 <foo_ifelse+36> 6 c += 1; 0x08048435 <+24>: movzx eax,BYTE PTR [ebp-0x4] 0x08048439 <+28>: add eax,0x1 0x0804843c <+31>: mov BYTE PTR [ebp-0x4],al 0x0804843f <+34>: jmp 0x804847b <foo_ifelse+94> 7 } else if (c == 'a' || c == 'b') { 0x08048441 <+36>: cmp BYTE PTR [ebp-0x4],0x61 0x08048445 <+40>: je 0x804844d <foo_ifelse+48> 0x08048447 <+42>: cmp BYTE PTR [ebp-0x4],0x62 0x0804844b <+46>: jne 0x8048459 <foo_ifelse+60> 8 c += 2; 0x0804844d <+48>: movzx eax,BYTE PTR [ebp-0x4] 0x08048451 <+52>: add eax,0x2 0x08048454 <+55>: mov BYTE PTR [ebp-0x4],al 0x08048457 <+58>: jmp 0x804847b <foo_ifelse+94> 9 } else if (c == 'A' || c == 'B') { 0x08048459 <+60>: cmp BYTE PTR [ebp-0x4],0x41 0x0804845d <+64>: je 0x8048465 <foo_ifelse+72> 0x0804845f <+66>: cmp BYTE PTR [ebp-0x4],0x42 0x08048463 <+70>: jne 0x8048471 <foo_ifelse+84> 10 c += 3; 0x08048465 <+72>: movzx eax,BYTE PTR [ebp-0x4] 0x08048469 <+76>: add eax,0x3 0x0804846c <+79>: mov BYTE PTR [ebp-0x4],al 0x0804846f <+82>: jmp 0x804847b <foo_ifelse+94> 11 } else { 12 c += 4; 0x08048471 <+84>: movzx eax,BYTE PTR [ebp-0x4] 0x08048475 <+88>: add eax,0x4 0x08048478 <+91>: mov BYTE PTR [ebp-0x4],al 13 } 14 15 return (c); 0x0804847b <+94>: movsx eax,BYTE PTR [ebp-0x4] 16 } 0x0804847f <+98>: leave 0x08048480 <+99>: ret End of assembler dump. (gdb) o 反汇编foo_switch() (gdb) set disassembly-flavor intel(gdb) disas /m foo_switch Dump of assembler code for function foo_switch: 20 { 0x08048481 <+0>: push ebp 0x08048482 <+1>: mov ebp,esp 0x08048484 <+3>: sub esp,0x4 0x08048487 <+6>: mov eax,DWORD PTR [ebp+0x8] 0x0804848a <+9>: mov BYTE PTR [ebp-0x4],al 21 switch (c) { 0x0804848d <+12>: movsx eax,BYTE PTR [ebp-0x4] 0x08048491 <+16>: sub eax,0x30 0x08048494 <+19>: cmp eax,0x32 0x08048497 <+22>: ja 0x80484c6 <foo_switch+69> 0x08048499 <+24>: mov eax,DWORD PTR [eax*4+0x80485f0] 0x080484a0 <+31>: jmp eax 22 case '1': 23 case '0': c += 1; break; 0x080484a2 <+33>: movzx eax,BYTE PTR [ebp-0x4] 0x080484a6 <+37>: add eax,0x1 0x080484a9 <+40>: mov BYTE PTR [ebp-0x4],al 0x080484ac <+43>: jmp 0x80484d1 <foo_switch+80> 24 case 'b': 25 case 'a': c += 2; break; 0x080484ae <+45>: movzx eax,BYTE PTR [ebp-0x4] 0x080484b2 <+49>: add eax,0x2 0x080484b5 <+52>: mov BYTE PTR [ebp-0x4],al 0x080484b8 <+55>: jmp 0x80484d1 <foo_switch+80> 26 case 'B': 27 case 'A': c += 3; break; 0x080484ba <+57>: movzx eax,BYTE PTR [ebp-0x4] 0x080484be <+61>: add eax,0x3 0x080484c1 <+64>: mov BYTE PTR [ebp-0x4],al 0x080484c4 <+67>: jmp 0x80484d1 <foo_switch+80> 28 default: c += 4; break; 0x080484c6 <+69>: movzx eax,BYTE PTR [ebp-0x4] 0x080484ca <+73>: add eax,0x4 0x080484cd <+76>: mov BYTE PTR [ebp-0x4],al 0x080484d0 <+79>: nop 29 } 30 31 return (c); 0x080484d1 <+80>: movsx eax,BYTE PTR [ebp-0x4] 32 } 0x080484d5 <+84>: leave 0x080484d6 <+85>: ret End of assembler dump. (gdb) 分析:
21 switch (c) { 0x0804848d <+12>: movsx eax,BYTE PTR [ebp-0x4] 0x08048491 <+16>: sub eax,0x30 0x08048494 <+19>: cmp eax,0x32 0x08048497 <+22>: ja 0x80484c6 <foo_switch+69> 0x08048499 <+24>: mov eax,DWORD PTR [eax*4+0x80485f0] 0x080484a0 <+31>: jmp eax .. 注意: 第17行 jmp eax 也就是说,当c的取值不同,是什么机制保证第17行能跳转到正确的位置开始执行呢? 第16行: eax = [eax * 4 + 0x80485f0] 搞清楚了从地址0x80485f0开始,对应的内存里面的内容也就回答了刚才的问题。 执行完第16行后,
通过gdb查看对应的内存,确实如此! >>> ord('1') - 0x30>>> ord('0') - 0x30 (gdb) x /2wx 0*4+0x80485f0 0x80485f0: 0x080484a2 0x080484a2 >>> ord('b') - 0x30 >>> ord('a') - 0x30 (gdb) x /2wx 49*4+0x80485f0 0x80486b4: 0x080484ae 0x080484ae >>> ord('B') - 0x30 >>> ord('A') - 0x30 (gdb) x /2wx 17*4+0x80485f0 0x8048634: 0x080484ba 0x080484ba 那么,我们可以大胆的猜测,虽然c的取值不同但是跳转的IP确实是精准无误的,一定是编译阶段就被设定好了,果真如此吗?接下来分析一下对应的二进制文件foo, 第四步,使用objdump查看foo,$ objdump -D foo > /tmp/x$ vim /tmp/x 509 Disassembly of section .rodata: ... 518 80485f0: a2 84 04 08 a2 mov %al,0xa2080484 519 80485f5: 84 04 08 test %al,(%eax,%ecx,1) ... 534 8048630: c6 84 04 08 ba 84 04 movb $0x8,0x484ba08(%esp,%eax,1) 535 8048637: 08 536 8048638: ba 84 04 08 c6 mov $0xc6080484,%edx ... 566 80486b0: c6 84 04 08 ae 84 04 movb $0x8,0x484ae08(%esp,%eax,1) 567 80486b7: 08 568 80486b8: ae scas %es ![]() 569 80486b9: 84 04 08 test %al,(%eax,%ecx,1) ... 在0x80485f0地址,存的8个字节正好是0x080484a2, 0x080484a2 (注意:按照小端的方式阅读) 在0x80486b4地址,存的8个字节正好是0x080484ae, 0x080484ae 在0x8048634地址,存的8个字节正好是0x080484ba,0x080484ba 果然不出所料,要跳转的IP的值正是在编译的时候存入了.rodata(只读数据区)。一旦foo开始运行,对应的内存地址就填写上了正确的待跳转地址,接下来只不过是根据c的取值计算出对应的IP存放的内存起始地址X,从X中取出待跳转的地址,直接跳转就好。 16 0x08048499 <+24>: mov eax,DWORD PTR [eax*4+0x80485f0]17 0x080484a0 <+31>: jmp eax 到此为止,我们已经搞清楚了为什么switch...case...语句相对于if...else if...else...来说执行效率要高的根本原因。简言之,编译的时候创建了一个map存于.rodata区中,运行的时候直接根据输入(c的值)查表,找到对应的IP后直接跳转。(省去了cmp, jmp -> cmp, jmp -> cmp, jmp...这一冗长的计算过程。) 总结:switch...case...执行效率高,属于典型的以空间换时间。也就是说,(套用算法的行话)以提高空间复杂度为代价降低了时间复杂度。 |
赞一个 |