
STM32F10xxx 正交编码器接口应用笔记 及源代码![]() 1 正交编码器原理 正交编码器实际上就是光电编码器,分为增量式和绝对式,较其它检测元件有直接输出数字量信号,惯量低,低噪声,高精度,高分辨率,制作简便,成本低等优点。增量式编码器结构简单,制作容易,一般在码盘上刻A、B、Z三道均匀分布的刻线。由于其给出的位置信息是增量式的,当应用于伺服领域时需要初始定位。格雷码绝对式编码器一般都做成循环二进制代码,码道道数与二进制位数相同。格雷码绝对式编码器可直接输出转子的绝对位置,不需要测定初始位置。但其工艺复杂、成本高,实现高分辨率、高精度较为困难。 |
RE:STM32F10xxx 正交编码器接口应用笔记 及源代码
RE:STM32F10xxx 正交编码器接口应用笔记 及源代码
RE:STM32F10xxx 正交编码器接口应用笔记 及源代码
RE:STM32F10xxx 正交编码器接口应用笔记 及源代码
RE:STM32F10xxx 正交编码器接口应用笔记 及源代码
RE:STM32F10xxx 正交编码器接口应用笔记 及源代码
RE:STM32F10xxx 正交编码器接口应用笔记 及源代码
回复:STM32F10xxx 正交编码器接口应用笔记 及源代码
STM32F10xxx 正交编码器接口应用笔记 及源代码& y1 w% B1 J+ F+ I2 m$ {
1 正交编码器原理. m* z/ s- i$ N6 H
正交编码器实际上就是光电编码器,分为增量式和绝对式,较其它检测元件有直接输出数字量信号,惯量低,低噪声,高精度,高分辨率,制作简便,成本低等优点。增量式编码器结构简单,制作容易,一般在码盘上刻A、B、Z三道均匀分布的刻线。由于其给出的位置信息是增量式的,当应用于伺服领域时需要初始定位。格雷码绝对式编码器一般都做成循环二进制代码,码道道数与二进制位数相同。格雷码绝对式编码器可直接输出转子的绝对位置,不需要测定初始位置。但其工艺复杂、成本高,实现高分辨率、高精度较为困难。
: I( x9 _: k5 h r( M" F9 K' U
先看看,
RE:STM32F10xxx 正交编码器接口应用笔记 及源代码
RE:STM32F10xxx 正交编码器接口应用笔记 及源代码
回复:STM32F10xxx 正交编码器接口应用笔记 及源代码
回复:STM32F10xxx 正交编码器接口应用笔记 及源代码
STM32F10xxx 正交编码器接口应用笔记 及源代码* R B: V( |0 I% y8 H
1 正交编码器原理
正交编码器实际上就是光电编码器,分为增量式和绝对式,较其它检测元件有直接输出数字量信号,惯量低,低噪声,高精度,高分辨率,制作简便,成本低等优点。增量式编码器结构简单,制作容易,一般在码盘上刻A、B、Z三道均匀分布的刻线。由于其给出的位置信息是增量式的,当应用于伺服领域时需要初始定位。格雷码绝对式编码器一般都做成循环二进制代码,码道道数与二进制位数相同。格雷码绝对式编码器可直接输出转子的绝对位置,不需要测定初始位置。但其工艺复杂、成本高,实现高分辨率、高精度较为困难。
6 u0 q p% ]# B5 X I' _ \
有用
RE:STM32F10xxx 正交编码器接口应用笔记 及源代码
回复:STM32F10xxx 正交编码器接口应用笔记 及源代码
STM32F10xxx 正交编码器接口应用笔记 及源代码) I* J+ X9 P" k
1 正交编码器原理
正交编码器实际上就是光电编码器,分为增量式和绝对式,较其它检测元件有直接输出数字量信号,惯量低,低噪声,高精度,高分辨率,制作简便,成本低等优点。增量式编码器结构简单,制作容易,一般在码盘上刻A、B、Z三道均匀分布的刻线。由于其给出的位置信息是增量式的,当应用于伺服领域时需要初始定位。格雷码绝对式编码器一般都做成循环二进制代码,码道道数与二进制位数相同。格雷码绝对式编码器可直接输出转子的绝对位置,不需要测定初始位置。但其工艺复杂、成本高,实现高分辨率、高精度较为困难。9 E9 s4 @1 u( c# k ?$ N1 ?