
STM32F10xxx 正交编码器接口应用笔记 及源代码![]() 1 正交编码器原理- t! g5 y* f0 | f8 m 正交编码器实际上就是光电编码器,分为增量式和绝对式,较其它检测元件有直接输出数字量信号,惯量低,低噪声,高精度,高分辨率,制作简便,成本低等优点。增量式编码器结构简单,制作容易,一般在码盘上刻A、B、Z三道均匀分布的刻线。由于其给出的位置信息是增量式的,当应用于伺服领域时需要初始定位。格雷码绝对式编码器一般都做成循环二进制代码,码道道数与二进制位数相同。格雷码绝对式编码器可直接输出转子的绝对位置,不需要测定初始位置。但其工艺复杂、成本高,实现高分辨率、高精度较为困难。 |
RE:STM32F10xxx 正交编码器接口应用笔记 及源代码
RE:STM32F10xxx 正交编码器接口应用笔记 及源代码
RE:STM32F10xxx 正交编码器接口应用笔记 及源代码
RE:STM32F10xxx 正交编码器接口应用笔记 及源代码
RE:STM32F10xxx 正交编码器接口应用笔记 及源代码
RE:STM32F10xxx 正交编码器接口应用笔记 及源代码
RE:STM32F10xxx 正交编码器接口应用笔记 及源代码
回复:STM32F10xxx 正交编码器接口应用笔记 及源代码
STM32F10xxx 正交编码器接口应用笔记 及源代码
1 正交编码器原理
正交编码器实际上就是光电编码器,分为增量式和绝对式,较其它检测元件有直接输出数字量信号,惯量低,低噪声,高精度,高分辨率,制作简便,成本低等优点。增量式编码器结构简单,制作容易,一般在码盘上刻A、B、Z三道均匀分布的刻线。由于其给出的位置信息是增量式的,当应用于伺服领域时需要初始定位。格雷码绝对式编码器一般都做成循环二进制代码,码道道数与二进制位数相同。格雷码绝对式编码器可直接输出转子的绝对位置,不需要测定初始位置。但其工艺复杂、成本高,实现高分辨率、高精度较为困难。
$ O( F: U" q- F
# @* ~' N# i) s& u+ @5 h
先看看,
RE:STM32F10xxx 正交编码器接口应用笔记 及源代码
RE:STM32F10xxx 正交编码器接口应用笔记 及源代码
回复:STM32F10xxx 正交编码器接口应用笔记 及源代码
回复:STM32F10xxx 正交编码器接口应用笔记 及源代码
STM32F10xxx 正交编码器接口应用笔记 及源代码
1 正交编码器原理) s1 z5 Q' y" U/ Z6 D F2 P8 T
正交编码器实际上就是光电编码器,分为增量式和绝对式,较其它检测元件有直接输出数字量信号,惯量低,低噪声,高精度,高分辨率,制作简便,成本低等优点。增量式编码器结构简单,制作容易,一般在码盘上刻A、B、Z三道均匀分布的刻线。由于其给出的位置信息是增量式的,当应用于伺服领域时需要初始定位。格雷码绝对式编码器一般都做成循环二进制代码,码道道数与二进制位数相同。格雷码绝对式编码器可直接输出转子的绝对位置,不需要测定初始位置。但其工艺复杂、成本高,实现高分辨率、高精度较为困难。; L( g4 _- k `5 o; ]3 ~
) c1 ~2 u! k8 i! ~8 I9 x
有用
RE:STM32F10xxx 正交编码器接口应用笔记 及源代码
回复:STM32F10xxx 正交编码器接口应用笔记 及源代码
STM32F10xxx 正交编码器接口应用笔记 及源代码
1 正交编码器原理9 G( j; x0 l- j9 l8 v/ J7 o0 Y
正交编码器实际上就是光电编码器,分为增量式和绝对式,较其它检测元件有直接输出数字量信号,惯量低,低噪声,高精度,高分辨率,制作简便,成本低等优点。增量式编码器结构简单,制作容易,一般在码盘上刻A、B、Z三道均匀分布的刻线。由于其给出的位置信息是增量式的,当应用于伺服领域时需要初始定位。格雷码绝对式编码器一般都做成循环二进制代码,码道道数与二进制位数相同。格雷码绝对式编码器可直接输出转子的绝对位置,不需要测定初始位置。但其工艺复杂、成本高,实现高分辨率、高精度较为困难。