你的浏览器版本过低,可能导致网站不能正常访问!
为了你能正常使用网站功能,请使用这些浏览器。

STM32CubeIDE浮点型数据

[复制链接]
水滴石穿 提问时间:2020-5-19 13:20 /
Win10 使用 STM32CubeIDE1.3.1使用CubeMX配置FreeRTOS,选择动态创建一个任务
任务.PNG
工程属性中勾选了 C/C++ Build Setting 里面的 Use float with printf from newlib-nano(-u _printf_float)


在任务内部无法调用sprintf或者vsprintf函数处理 %f 浮点数据,碰到%f会导致硬件错误


在任务外部使用 vsprintf 可以正常处理 %f 浮点数

请问一下这种问题该怎么解决
收藏 评论6 发布时间:2020-5-19 13:20

举报

6个回答
butterflyspring 回答时间:2020-6-9 11:10:18
看看是不是任务切换引起的
butterflyspring 回答时间:2020-6-9 11:10:35
看看是不是任务切换引起的
天臆弄人 回答时间:2020-6-10 13:41:37
简单很
水滴石穿 回答时间:2020-8-5 13:02:26
butterflyspring 发表于 2020-6-9 11:10
看看是不是任务切换引起的

好像不是,具体原因不详。之前查的有说可能是内存对齐
水滴石穿 回答时间:2020-8-5 13:02:55
mtxo2003@163.co 回答时间:2021-1-8 17:48:43
楼主,STM32CUBEIDE的项目,怎么重构造printf函数啊!我这边按百度的方法都不行!
https://blog.csdn.net/qq_42212961/article/details/105803129
STM32CUBEIDE版本是1.5.0,编译不报错,调试运行到那就会跳转到延迟函数去~~
以下是代码

/* USER CODE BEGIN Header */
/**
  ******************************************************************************
  * @file           : main.c
  * @brief          : Main program body
  ******************************************************************************
  * @attention
  *
  * <h2><center>&copy; Copyright (c) 2021 STMicroelectronics.
  * All rights reserved.</center></h2>
  *
  * This software component is licensed by ST under BSD 3-Clause license,
  * the "License"; You may not use this file except in compliance with the
  * License. You may obtain a copy of the License at:
  *                        opensource.org/licenses/BSD-3-Clause
  *
  ******************************************************************************
  */
/* USER CODE END Header */
/* Includes ------------------------------------------------------------------*/
#include "main.h"

/* Private includes ----------------------------------------------------------*/
/* USER CODE BEGIN Includes */
#include "stdio.h"
/* USER CODE END Includes */

/* Private typedef -----------------------------------------------------------*/
/* USER CODE BEGIN PTD */

// 重定向printf start
////_write函數在syscalls.c中, 使用__weak定義, 所以可以直接在其他文件中定義_write函數
//__attribute__((weak)) int _write(int file, char *ptr, int len)
//{
//         if(HAL_UART_Transmit(&huart2,ptr,len,0xffff) != HAL_OK)
//         {
//                 Error_Handler();
//         }
//}

/* USER CODE END PTD */

/* Private define ------------------------------------------------------------*/
/* USER CODE BEGIN PD */



/* USER CODE END PD */

/* Private macro -------------------------------------------------------------*/
/* USER CODE BEGIN PM */

/* USER CODE END PM */

/* Private variables ---------------------------------------------------------*/
ADC_HandleTypeDef hadc1;
DMA_HandleTypeDef hdma_adc1;

CRC_HandleTypeDef hcrc;

I2C_HandleTypeDef hi2c1;

IWDG_HandleTypeDef hiwdg;

TIM_HandleTypeDef htim3;

UART_HandleTypeDef huart1;
UART_HandleTypeDef huart2;
DMA_HandleTypeDef hdma_usart1_tx;
DMA_HandleTypeDef hdma_usart1_rx;

/* USER CODE BEGIN PV */

/* USER CODE END PV */

/* Private function prototypes -----------------------------------------------*/
void SystemClock_Config(void);
static void MX_GPIO_Init(void);
static void MX_DMA_Init(void);
static void MX_USART1_UART_Init(void);
static void MX_ADC1_Init(void);
static void MX_I2C1_Init(void);
static void MX_USART2_UART_Init(void);
static void MX_IWDG_Init(void);
static void MX_CRC_Init(void);
static void MX_TIM3_Init(void);
/* USER CODE BEGIN PFP */

/* USER CODE END PFP */

/* Private user code ---------------------------------------------------------*/
/* USER CODE BEGIN 0 */
static uint32_t fac_us=17;

#ifdef __GNUC__

  /* With GCC, small printf (option LD Linker->Libraries->Small printf
     set to 'Yes') calls __io_putchar() */
  #define PUTCHAR_PROTOTYPE int __io_putchar(int ch)
#else
  #define PUTCHAR_PROTOTYPE int fputc(int ch, FILE *f)
#endif /* __GNUC__ */

PUTCHAR_PROTOTYPE
{
  HAL_UART_Transmit(&huart2, (uint8_t *)&ch, 1, 0xFFFF);

  return ch;
}

/* USER CODE END 0 */

/**
  * @brief  The application entry point.
  * @retval int
  */
int main(void)
{
  /* USER CODE BEGIN 1 */

  /* USER CODE END 1 */

  /* MCU Configuration--------------------------------------------------------*/

  /* Reset of all peripherals, Initializes the Flash interface and the Systick. */
  HAL_Init();

  /* USER CODE BEGIN Init */

  /* USER CODE END Init */

  /* Configure the system clock */
  SystemClock_Config();

  /* USER CODE BEGIN SysInit */

  /* USER CODE END SysInit */

  /* Initialize all configured peripherals */
  MX_GPIO_Init();
  MX_DMA_Init();
  MX_USART1_UART_Init();
  MX_ADC1_Init();
  MX_I2C1_Init();
  MX_USART2_UART_Init();
  MX_IWDG_Init();
  MX_CRC_Init();
  MX_TIM3_Init();
  /* USER CODE BEGIN 2 */

  /* USER CODE END 2 */

  /* Infinite loop */
  /* USER CODE BEGIN WHILE */
  while (1)
  {
    /* USER CODE END WHILE */

    /* USER CODE BEGIN 3 */
          HAL_GPIO_WritePin(WARN_GPIO_Port, WARN_Pin,GPIO_PIN_SET);
          printf("123456");
          HAL_GPIO_WritePin(WARN_GPIO_Port, WARN_Pin,GPIO_PIN_SET);
          delay_ms(1000);
          HAL_GPIO_WritePin(WARN_GPIO_Port, WARN_Pin,GPIO_PIN_RESET);
          delay_ms(1000);
          HAL_GPIO_WritePin(WARN_GPIO_Port, WARN_Pin,GPIO_PIN_SET);

  }
  /* USER CODE END 3 */
}

/**
  * @brief System Clock Configuration
  * @retval None
  */
void SystemClock_Config(void)
{
  RCC_OscInitTypeDef RCC_OscInitStruct = {0};
  RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};
  RCC_PeriphCLKInitTypeDef PeriphClkInit = {0};

  /** Configure the main internal regulator output voltage
  */
  HAL_PWREx_ControlVoltageScaling(PWR_REGULATOR_VOLTAGE_SCALE1);
  /** Initializes the RCC Oscillators according to the specified parameters
  * in the RCC_OscInitTypeDef structure.
  */
  RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_LSI|RCC_OSCILLATORTYPE_HSE;
  RCC_OscInitStruct.HSEState = RCC_HSE_ON;
  RCC_OscInitStruct.LSIState = RCC_LSI_ON;
  RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
  RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE;
  RCC_OscInitStruct.PLL.PLLM = RCC_PLLM_DIV1;
  RCC_OscInitStruct.PLL.PLLN = 12;
  RCC_OscInitStruct.PLL.PLLP = RCC_PLLP_DIV6;
  RCC_OscInitStruct.PLL.PLLR = RCC_PLLR_DIV3;
  if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
  {
    Error_Handler();
  }
  /** Initializes the CPU, AHB and APB buses clocks
  */
  RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK
                              |RCC_CLOCKTYPE_PCLK1;
  RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
  RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV2;
  RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV1;

  if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_0) != HAL_OK)
  {
    Error_Handler();
  }
  /** Initializes the peripherals clocks
  */
  PeriphClkInit.PeriphClockSelection = RCC_PERIPHCLK_USART1|RCC_PERIPHCLK_I2C1
                              |RCC_PERIPHCLK_ADC;
  PeriphClkInit.Usart1ClockSelection = RCC_USART1CLKSOURCE_PCLK1;
  PeriphClkInit.I2c1ClockSelection = RCC_I2C1CLKSOURCE_PCLK1;
  PeriphClkInit.AdcClockSelection = RCC_ADCCLKSOURCE_PLLADC;
  if (HAL_RCCEx_PeriphCLKConfig(&PeriphClkInit) != HAL_OK)
  {
    Error_Handler();
  }
}

/**
  * @brief ADC1 Initialization Function
  * @param None
  * @retval None
  */
static void MX_ADC1_Init(void)
{

  /* USER CODE BEGIN ADC1_Init 0 */

  /* USER CODE END ADC1_Init 0 */

  ADC_AnalogWDGConfTypeDef AnalogWDGConfig = {0};
  ADC_ChannelConfTypeDef sConfig = {0};

  /* USER CODE BEGIN ADC1_Init 1 */

  /* USER CODE END ADC1_Init 1 */
  /** Configure the global features of the ADC (Clock, Resolution, Data Alignment and number of conversion)
  */
  hadc1.Instance = ADC1;
  hadc1.Init.ClockPrescaler = ADC_CLOCK_ASYNC_DIV1;
  hadc1.Init.Resolution = ADC_RESOLUTION_12B;
  hadc1.Init.DataAlign = ADC_DATAALIGN_RIGHT;
  hadc1.Init.ScanConvMode = ADC_SCAN_ENABLE;
  hadc1.Init.EOCSelection = ADC_EOC_SINGLE_CONV;
  hadc1.Init.LowPowerAutoWait = DISABLE;
  hadc1.Init.LowPowerAutoPowerOff = DISABLE;
  hadc1.Init.ContinuousConvMode = DISABLE;
  hadc1.Init.NbrOfConversion = 3;
  hadc1.Init.DiscontinuousConvMode = DISABLE;
  hadc1.Init.ExternalTrigConv = ADC_SOFTWARE_START;
  hadc1.Init.ExternalTrigConvEdge = ADC_EXTERNALTRIGCONVEDGE_NONE;
  hadc1.Init.DMAContinuousRequests = DISABLE;
  hadc1.Init.Overrun = ADC_OVR_DATA_PRESERVED;
  hadc1.Init.SamplingTimeCommon1 = ADC_SAMPLETIME_7CYCLES_5;
  hadc1.Init.SamplingTimeCommon2 = ADC_SAMPLETIME_7CYCLES_5;
  hadc1.Init.OversamplingMode = ENABLE;
  hadc1.Init.Oversampling.Ratio = ADC_OVERSAMPLING_RATIO_64;
  hadc1.Init.Oversampling.RightBitShift = ADC_RIGHTBITSHIFT_3;
  hadc1.Init.Oversampling.TriggeredMode = ADC_TRIGGEREDMODE_SINGLE_TRIGGER;
  hadc1.Init.TriggerFrequencyMode = ADC_TRIGGER_FREQ_HIGH;
  if (HAL_ADC_Init(&hadc1) != HAL_OK)
  {
    Error_Handler();
  }
  /** Configure Analog WatchDog 1
  */
  AnalogWDGConfig.WatchdogNumber = ADC_ANALOGWATCHDOG_1;
  AnalogWDGConfig.WatchdogMode = ADC_ANALOGWATCHDOG_SINGLE_REG;
  AnalogWDGConfig.Channel = ADC_CHANNEL_5;
  AnalogWDGConfig.ITMode = DISABLE;
  AnalogWDGConfig.HighThreshold = 0;
  AnalogWDGConfig.LowThreshold = 0;
  if (HAL_ADC_AnalogWDGConfig(&hadc1, &AnalogWDGConfig) != HAL_OK)
  {
    Error_Handler();
  }
  /** Configure Regular Channel
  */
  sConfig.Channel = ADC_CHANNEL_5;
  sConfig.Rank = ADC_REGULAR_RANK_1;
  sConfig.SamplingTime = ADC_SAMPLINGTIME_COMMON_1;
  if (HAL_ADC_ConfigChannel(&hadc1, &sConfig) != HAL_OK)
  {
    Error_Handler();
  }
  /** Configure Regular Channel
  */
  sConfig.Channel = ADC_CHANNEL_6;
  sConfig.Rank = ADC_REGULAR_RANK_2;
  if (HAL_ADC_ConfigChannel(&hadc1, &sConfig) != HAL_OK)
  {
    Error_Handler();
  }
  /** Configure Regular Channel
  */
  sConfig.Channel = ADC_CHANNEL_8;
  sConfig.Rank = ADC_REGULAR_RANK_3;
  if (HAL_ADC_ConfigChannel(&hadc1, &sConfig) != HAL_OK)
  {
    Error_Handler();
  }
  /* USER CODE BEGIN ADC1_Init 2 */

  /* USER CODE END ADC1_Init 2 */

}

/**
  * @brief CRC Initialization Function
  * @param None
  * @retval None
  */
static void MX_CRC_Init(void)
{

  /* USER CODE BEGIN CRC_Init 0 */

  /* USER CODE END CRC_Init 0 */

  /* USER CODE BEGIN CRC_Init 1 */

  /* USER CODE END CRC_Init 1 */
  hcrc.Instance = CRC;
  hcrc.Init.DefaultPolynomialUse = DEFAULT_POLYNOMIAL_DISABLE;
  hcrc.Init.DefaultInitValueUse = DEFAULT_INIT_VALUE_DISABLE;
  hcrc.Init.GeneratingPolynomial = 16387;
  hcrc.Init.CRCLength = CRC_POLYLENGTH_16B;
  hcrc.Init.InitValue = 0xffff;
  hcrc.Init.InputDataInversionMode = CRC_INPUTDATA_INVERSION_NONE;
  hcrc.Init.OutputDataInversionMode = CRC_OUTPUTDATA_INVERSION_DISABLE;
  hcrc.InputDataFormat = CRC_INPUTDATA_FORMAT_BYTES;
  if (HAL_CRC_Init(&hcrc) != HAL_OK)
  {
    Error_Handler();
  }
  /* USER CODE BEGIN CRC_Init 2 */

  /* USER CODE END CRC_Init 2 */

}

/**
  * @brief I2C1 Initialization Function
  * @param None
  * @retval None
  */
static void MX_I2C1_Init(void)
{

  /* USER CODE BEGIN I2C1_Init 0 */

  /* USER CODE END I2C1_Init 0 */

  /* USER CODE BEGIN I2C1_Init 1 */

  /* USER CODE END I2C1_Init 1 */
  hi2c1.Instance = I2C1;
  hi2c1.Init.Timing = 0x00303D5B;
  hi2c1.Init.OwnAddress1 = 0;
  hi2c1.Init.AddressingMode = I2C_ADDRESSINGMODE_7BIT;
  hi2c1.Init.DualAddressMode = I2C_DUALADDRESS_DISABLE;
  hi2c1.Init.OwnAddress2 = 0;
  hi2c1.Init.OwnAddress2Masks = I2C_OA2_NOMASK;
  hi2c1.Init.GeneralCallMode = I2C_GENERALCALL_DISABLE;
  hi2c1.Init.NoStretchMode = I2C_NOSTRETCH_DISABLE;
  if (HAL_I2C_Init(&hi2c1) != HAL_OK)
  {
    Error_Handler();
  }
  /** Configure Analogue filter
  */
  if (HAL_I2CEx_ConfigAnalogFilter(&hi2c1, I2C_ANALOGFILTER_ENABLE) != HAL_OK)
  {
    Error_Handler();
  }
  /** Configure Digital filter
  */
  if (HAL_I2CEx_ConfigDigitalFilter(&hi2c1, 0) != HAL_OK)
  {
    Error_Handler();
  }
  /* USER CODE BEGIN I2C1_Init 2 */

  /* USER CODE END I2C1_Init 2 */

}

/**
  * @brief IWDG Initialization Function
  * @param None
  * @retval None
  */
static void MX_IWDG_Init(void)
{

  /* USER CODE BEGIN IWDG_Init 0 */

  /* USER CODE END IWDG_Init 0 */

  /* USER CODE BEGIN IWDG_Init 1 */

  /* USER CODE END IWDG_Init 1 */
  hiwdg.Instance = IWDG;
  hiwdg.Init.Prescaler = IWDG_PRESCALER_32;
  hiwdg.Init.Window = 4095;
  hiwdg.Init.Reload = 4095;
  if (HAL_IWDG_Init(&hiwdg) != HAL_OK)
  {
    Error_Handler();
  }
  /* USER CODE BEGIN IWDG_Init 2 */

  /* USER CODE END IWDG_Init 2 */

}

/**
  * @brief TIM3 Initialization Function
  * @param None
  * @retval None
  */
static void MX_TIM3_Init(void)
{

  /* USER CODE BEGIN TIM3_Init 0 */

  /* USER CODE END TIM3_Init 0 */

  TIM_ClockConfigTypeDef sClockSourceConfig = {0};
  TIM_MasterConfigTypeDef sMasterConfig = {0};

  /* USER CODE BEGIN TIM3_Init 1 */

  /* USER CODE END TIM3_Init 1 */
  htim3.Instance = TIM3;
  htim3.Init.Prescaler = 6400-1;
  htim3.Init.CounterMode = TIM_COUNTERMODE_UP;
  htim3.Init.Period = 2500-1;
  htim3.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
  htim3.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_ENABLE;
  if (HAL_TIM_Base_Init(&htim3) != HAL_OK)
  {
    Error_Handler();
  }
  sClockSourceConfig.ClockSource = TIM_CLOCKSOURCE_INTERNAL;
  if (HAL_TIM_ConfigClockSource(&htim3, &sClockSourceConfig) != HAL_OK)
  {
    Error_Handler();
  }
  sMasterConfig.MasterOutputTrigger = TIM_TRGO_RESET;
  sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE;
  if (HAL_TIMEx_MasterConfigSynchronization(&htim3, &sMasterConfig) != HAL_OK)
  {
    Error_Handler();
  }
  /* USER CODE BEGIN TIM3_Init 2 */

  /* USER CODE END TIM3_Init 2 */

}

/**
  * @brief USART1 Initialization Function
  * @param None
  * @retval None
  */
static void MX_USART1_UART_Init(void)
{

  /* USER CODE BEGIN USART1_Init 0 */

  /* USER CODE END USART1_Init 0 */

  /* USER CODE BEGIN USART1_Init 1 */

  /* USER CODE END USART1_Init 1 */
  huart1.Instance = USART1;
  huart1.Init.BaudRate = 115200;
  huart1.Init.WordLength = UART_WORDLENGTH_8B;
  huart1.Init.StopBits = UART_STOPBITS_1;
  huart1.Init.Parity = UART_PARITY_NONE;
  huart1.Init.Mode = UART_MODE_TX_RX;
  huart1.Init.HwFlowCtl = UART_HWCONTROL_NONE;
  huart1.Init.OverSampling = UART_OVERSAMPLING_16;
  huart1.Init.OneBitSampling = UART_ONE_BIT_SAMPLE_DISABLE;
  huart1.Init.ClockPrescaler = UART_PRESCALER_DIV1;
  huart1.AdvancedInit.AdvFeatureInit = UART_ADVFEATURE_NO_INIT;
  if (HAL_UART_Init(&huart1) != HAL_OK)
  {
    Error_Handler();
  }
  if (HAL_UARTEx_SetTxFifoThreshold(&huart1, UART_TXFIFO_THRESHOLD_1_8) != HAL_OK)
  {
    Error_Handler();
  }
  if (HAL_UARTEx_SetRxFifoThreshold(&huart1, UART_RXFIFO_THRESHOLD_1_8) != HAL_OK)
  {
    Error_Handler();
  }
  if (HAL_UARTEx_DisableFifoMode(&huart1) != HAL_OK)
  {
    Error_Handler();
  }
  /* USER CODE BEGIN USART1_Init 2 */

  /* USER CODE END USART1_Init 2 */

}

/**
  * @brief USART2 Initialization Function
  * @param None
  * @retval None
  */
static void MX_USART2_UART_Init(void)
{

  /* USER CODE BEGIN USART2_Init 0 */

  /* USER CODE END USART2_Init 0 */

  /* USER CODE BEGIN USART2_Init 1 */

  /* USER CODE END USART2_Init 1 */
  huart2.Instance = USART2;
  huart2.Init.BaudRate = 115200;
  huart2.Init.WordLength = UART_WORDLENGTH_8B;
  huart2.Init.StopBits = UART_STOPBITS_1;
  huart2.Init.Parity = UART_PARITY_NONE;
  huart2.Init.Mode = UART_MODE_TX_RX;
  huart2.Init.HwFlowCtl = UART_HWCONTROL_NONE;
  huart2.Init.OverSampling = UART_OVERSAMPLING_16;
  huart2.Init.OneBitSampling = UART_ONE_BIT_SAMPLE_DISABLE;
  huart2.Init.ClockPrescaler = UART_PRESCALER_DIV1;
  huart2.AdvancedInit.AdvFeatureInit = UART_ADVFEATURE_NO_INIT;
  if (HAL_UART_Init(&huart2) != HAL_OK)
  {
    Error_Handler();
  }
  /* USER CODE BEGIN USART2_Init 2 */

  /* USER CODE END USART2_Init 2 */

}

/**
  * Enable DMA controller clock
  */
static void MX_DMA_Init(void)
{

  /* DMA controller clock enable */
  __HAL_RCC_DMA1_CLK_ENABLE();

  /* DMA interrupt init */
  /* DMA1_Channel1_IRQn interrupt configuration */
  HAL_NVIC_SetPriority(DMA1_Channel1_IRQn, 1, 0);
  HAL_NVIC_EnableIRQ(DMA1_Channel1_IRQn);
  /* DMA1_Channel2_3_IRQn interrupt configuration */
  HAL_NVIC_SetPriority(DMA1_Channel2_3_IRQn, 0, 0);
  HAL_NVIC_EnableIRQ(DMA1_Channel2_3_IRQn);

}

/**
  * @brief GPIO Initialization Function
  * @param None
  * @retval None
  */
static void MX_GPIO_Init(void)
{
  GPIO_InitTypeDef GPIO_InitStruct = {0};

  /* GPIO Ports Clock Enable */
  __HAL_RCC_GPIOF_CLK_ENABLE();
  __HAL_RCC_GPIOA_CLK_ENABLE();
  __HAL_RCC_GPIOB_CLK_ENABLE();
  __HAL_RCC_GPIOD_CLK_ENABLE();

  /*Configure GPIO pin Output Level */
  HAL_GPIO_WritePin(RUN_GPIO_Port, RUN_Pin, GPIO_PIN_RESET);

  /*Configure GPIO pin Output Level */
  HAL_GPIO_WritePin(WARN_GPIO_Port, WARN_Pin, GPIO_PIN_RESET);

  /*Configure GPIO pin : RUN_Pin */
  GPIO_InitStruct.Pin = RUN_Pin;
  GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
  GPIO_InitStruct.Pull = GPIO_NOPULL;
  GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
  HAL_GPIO_Init(RUN_GPIO_Port, &GPIO_InitStruct);

  /*Configure GPIO pins : ADDR1_Pin ADDR2_Pin ADDR3_Pin ADDR4_Pin */
  GPIO_InitStruct.Pin = ADDR1_Pin|ADDR2_Pin|ADDR3_Pin|ADDR4_Pin;
  GPIO_InitStruct.Mode = GPIO_MODE_INPUT;
  GPIO_InitStruct.Pull = GPIO_PULLUP;
  HAL_GPIO_Init(GPIOD, &GPIO_InitStruct);

  /*Configure GPIO pins : VERSION1_Pin VERSION2_Pin */
  GPIO_InitStruct.Pin = VERSION1_Pin|VERSION2_Pin;
  GPIO_InitStruct.Mode = GPIO_MODE_INPUT;
  GPIO_InitStruct.Pull = GPIO_PULLUP;
  HAL_GPIO_Init(GPIOB, &GPIO_InitStruct);

  /*Configure GPIO pin : WARN_Pin */
  GPIO_InitStruct.Pin = WARN_Pin;
  GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
  GPIO_InitStruct.Pull = GPIO_NOPULL;
  GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
  HAL_GPIO_Init(WARN_GPIO_Port, &GPIO_InitStruct);

}

/* USER CODE BEGIN 4 */


/* USER CODE BEGIN 4 */
//延时nus
//nus为要延时的us数.
//nus:0~190887435(最大值即2^32/fac_us@fac_us=22.5)
void delay_us(uint32_t nus)
{
        uint32_t ticks;
        uint32_t told,tnow,tcnt=0;
        uint32_t reload=SysTick->LOAD;                                //LOAD的值
        ticks=nus*fac_us;                                                 //需要的节拍数
        told=SysTick->VAL;                                        //刚进入时的计数器值
        while(1)
        {
                tnow=SysTick->VAL;
                if(tnow!=told)
                {
                        if(tnow<told)tcnt+=told-tnow;        //这里注意一下SYSTICK是一个递减的计数器就可以了.
                        else tcnt+=reload-tnow+told;
                        told=tnow;
                        if(tcnt>=ticks)break;                        //时间超过/等于要延迟的时间,则退出.
                }
        };
}

//延时nms
//nms:要延时的ms数
void delay_ms(uint16_t nms)
{
        uint32_t i;
        for(i=0;i<nms;i++) delay_us(1000);
}


/* USER CODE END 4 */

/**
  * @brief  This function is executed in case of error occurrence.
  * @retval None
  */
void Error_Handler(void)
{
  /* USER CODE BEGIN Error_Handler_Debug */
  /* User can add his own implementation to report the HAL error return state */

  /* USER CODE END Error_Handler_Debug */
}

#ifdef  USE_FULL_ASSERT
/**
  * @brief  Reports the name of the source file and the source line number
  *         where the assert_param error has occurred.
  * @param  file: pointer to the source file name
  * @param  line: assert_param error line source number
  * @retval None
  */
void assert_failed(uint8_t *file, uint32_t line)
{
  /* USER CODE BEGIN 6 */
  /* User can add his own implementation to report the file name and line number,
     tex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */
  /* USER CODE END 6 */
}
#endif /* USE_FULL_ASSERT */

/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/

所属标签

相似问题

官网相关资源

关于
我们是谁
投资者关系
意法半导体可持续发展举措
创新与技术
意法半导体官网
联系我们
联系ST分支机构
寻找销售人员和分销渠道
社区
媒体中心
活动与培训
隐私策略
隐私策略
Cookies管理
行使您的权利
官方最新发布
STM32Cube扩展软件包
意法半导体边缘AI套件
ST - 理想汽车豪华SUV案例
ST意法半导体智能家居案例
STM32 ARM Cortex 32位微控制器
关注我们
st-img 微信公众号
st-img 手机版