1 前言% c- Q( s! D' A* S, ^
STSW-STM32116是ST官网基于标准库的针对STM32F0的USART进口IAP示例程序
0 C" Y9 j; |4 r' b8 R工程原本是针对STM32F051,本文将介绍如何移植到STM32F070,并针对移植的过程中的问题逐个处理。
7 O6 U* |" K) t1 }4 @+ V; k. o% ~3 E- k+ @3 V1 o( s# \" ^
2 KEIL下移植
! X4 m. R7 |% |% C& jIAP程序一般分为两个,一个是IAP,一个是APP,IAP存放在内置FLASH的0x8000000的起始位置,而APP则存放在离这个位置一定距离的位置,这个距离一定是大于或等于IAP本身所占空间大小,本例子为0x8003000。
) r" S# _" c8 a2 r& R, m. A' \: M" s, c( l; s
下载资源后,打开STM32F0xx_AN4065_FW_V1.0.0\Project\STM32F0xx_IAP\下的binary_template工程,这个就是APP工程,首先用KEIL打开,修改device为STM32F070,
' L! v, q6 X+ `
( K! }/ D4 N( ]. U, I; a' B
0 @8 @3 Y- q' W: H0 i9 q l- P+ _+ Q: W4 Q: ^
并编译,结果发现原始的公式是编译不过的,如下错误信息:$ w) V d, \! i0 J# I
- linking...5 m" N; [' ?+ q6 q
- .\STM320518_EVAL\STM320518_EVAL.axf: Error: L6971E: system_stm32f0xx.o(.data) type RW incompatible with main.o(.ARM.__AT_0x20000000) type ZI in er RW_IRAM1.
9 I/ U0 O; d3 ~" Q( q - Not enough information to list image symbols.
( [2 p& ~ V) W- h2 ?5 C - Finished: 1 information, 0 warning and 1 error messages.- _5 ^6 t, r* X# c; [8 G
- ".\STM320518_EVAL\STM320518_EVAL.axf" - 1 Error(s), 0 Warning(s).
- w# w+ v" ]" Q0 z5 l - Target not created.
4 B# b/ L2 Z" G# A0 \0 l - Build Time Elapsed: 00:00:08
复制代码 ; E8 {( \$ a3 P+ A& g P
从字面上判断为编译system_stm32f0xx.c文件生成的目标文件system_stm32f0xx.o中的数据段(.data)内的RW数据与main.o中的数据在地址0x20000000产生冲突。
! [5 R' k) w& ^仔细查看代码,发现main函数之前这么一段:
; B" H8 @$ ?# R5 N- #if (defined ( __CC_ARM ))
) f! T. Y7 k" \8 E2 P% A - __IO uint32_t VectorTable[48] __attribute__((at(0x20000000)));
7 h9 H& v9 {. x0 l2 h2 C$ W7 B - #elif (defined (__ICCARM__))
& B( s* I/ J% l - #pragma location = 0x200000008 T6 a2 z1 Z! h
- __no_init __IO uint32_t VectorTable[48];
8 {- W; @5 e Y - #elif defined ( __GNUC__ )* n H2 ]8 _' @7 B: U" k) L
- __IO uint32_t VectorTable[48] __attribute__((section(".RAMVectorTable")));
0 m0 z7 Q, f) B# x5 _ - #elif defined ( __TASKING__ ); S4 w9 R; }& {" |( [, H' g
- __IO uint32_t VectorTable[48] __at(0x20000000);
0 a" j' v( u/ u, q3 k - #endif
复制代码 / P2 L6 K; e/ E1 E
可见代码是要将中断向量表VectorTable强制定义在内存0x20000000上,但是此地址与system_stm32f0xx.c定义的全局变量位置有冲突。于是,需要修改避免冲突。中断向量的地址是固定的,但其他全局变量的地址可以相应地移动下,并且APP的烧录位置为0x8003000,如下图:
& H- C5 m) N2 v; m
/ G/ u5 Z2 T" d. F3 e
# Z& B- i9 s6 d$ H, }5 O T, [# a! Q% p6 h
再次编译,错误就会消失了。
% h0 W# G* I$ |% [: n5 v7 H0 g
8 O; u' l/ I! K" D3 \另外需要将main函数内前面几行代码做些修改:* B/ ^' ] v2 P! q
- int main(void)
! L0 r3 y" \9 ~) k - {8 c1 o+ W1 B9 M
- uint32_t i = 0;% i3 t' a$ U! U9 [
+ T: Q7 w1 e4 J- /*!< At this stage the microcontroller clock setting is already configured,
* Z7 j; a- F7 d6 q - this is done through SystemInit() function which is called from startup9 a8 }1 @4 O" a1 z' Q7 C
- file (startup_stm32f0xx.s) before to branch to application main.5 N+ c3 a$ U2 V% G
- To reconfigure the default setting of SystemInit() function, refer to7 a Y6 I# ~* h( e
- system_stm32f0xx.c file
; W6 H1 B$ k9 {7 A9 i - */ % i8 W" q4 k# ?0 I" @6 p
- 8 R% P5 d) D+ z
- /* Relocate by software the vector table to the internal SRAM at 0x20000000 ***/
O" [9 f# z0 e3 G
! n( m4 `# E F' P" F0 E- /* Copy the vector table from the Flash (mapped at the base of the application, h5 p" A8 U4 u1 U! Y. Y
- load address 0x08003000) to the base address of the SRAM at 0x20000000. *// L1 ]8 y) R: g7 ^6 h% r
- for(i = 0; i < 48; i++)
' l, b$ t, ?2 M" b9 v+ e# @* x - {! O, O4 ], t( @ u4 V0 _
- VectorTable<i> = *(__IO uint32_t*)(APPLICATION_ADDRESS + (i<<2));$ z, i/ q. v, m7 S" @5 j2 [
- </i>}
0 R* g8 M+ t& g# x" x
2 e* o$ \- h6 i- X/ n# |- /* Enable the SYSCFG peripheral clock*/
+ [- q8 u& L2 w - //RCC_APB2PeriphResetCmd(RCC_APB2Periph_SYSCFG, ENABLE);
7 l! B: S! h) ~: U8 `5 J8 Q - RCC_APB2PeriphClockCmd(RCC_APB2Periph_SYSCFG, ENABLE); //需要修改成这样2 J9 I; B; h- [" C( d. s
- /* Remap SRAM at 0x00000000 */' }/ u/ N% I' J* y' D) t1 W! M
- SYSCFG_MemoryRemapConfig(SYSCFG_MemoryRemap_SRAM);+ Q5 N' V% H( { i, n
% h5 F2 |+ p$ k0 [" M \- /...
; ^# y$ m8 i8 l V5 r - }
复制代码
" i2 v9 G& a( k; I) J' _打开对应的map文件,有如下内容:
8 }- [" d2 B2 i/ W- [- GPIO_PIN 0x08003470 Data 8 stm320518_eval.o(.constdata): G# ^8 L2 e+ P5 ]2 F- |# V
- GPIO_CLK 0x08003478 Data 16 stm320518_eval.o(.constdata)
2 {5 ]! |, R1 U% r G - BUTTON_PIN 0x08003488 Data 14 stm320518_eval.o(.constdata)/ z' o' d6 G7 j7 K' A
- BUTTON_CLK 0x08003498 Data 28 stm320518_eval.o(.constdata)
5 F% L, @; X# G# D' {8 A5 _1 I - BUTTON_EXTI_LINE 0x080034b4 Data 14 stm320518_eval.o(.constdata)4 {) l5 |" W, M! x; T" x
- BUTTON_PORT_SOURCE 0x080034c2 Data 14 stm320518_eval.o(.constdata)
; I3 h: o! u0 ]; Z+ n9 t, v - BUTTON_PIN_SOURCE 0x080034d0 Data 14 stm320518_eval.o(.constdata)
8 g. X0 n. ?, h* H& e* q - BUTTON_IRQn 0x080034de Data 14 stm320518_eval.o(.constdata)
3 }4 j. t6 a* m6 V5 _( J& @ - COM_USART_CLK 0x080034ec Data 4 stm320518_eval.o(.constdata)
! {6 u6 o- j1 ] - COM_TX_PORT_CLK 0x080034f0 Data 4 stm320518_eval.o(.constdata)
( M5 {9 \9 Y' B - COM_RX_PORT_CLK 0x080034f4 Data 4 stm320518_eval.o(.constdata)* c5 h* M- C9 R) ]1 X
- COM_TX_PIN 0x080034f8 Data 2 stm320518_eval.o(.constdata)
$ b$ |. W& [/ b2 ^3 {) o1 C - COM_RX_PIN 0x080034fa Data 2 stm320518_eval.o(.constdata)' d( e1 ?3 H; n/ X
- COM_TX_PIN_SOURCE 0x080034fc Data 2 stm320518_eval.o(.constdata)3 }! ]6 v$ v5 ~: p9 R
- COM_RX_PIN_SOURCE 0x080034fe Data 2 stm320518_eval.o(.constdata)$ d/ B z3 V7 s. w. Q
- COM_TX_AF 0x08003500 Data 2 stm320518_eval.o(.constdata)+ ^% ]% y( Y( X, o2 K
- COM_RX_AF 0x08003502 Data 2 stm320518_eval.o(.constdata)6 ~ Y/ S: S7 Y
- Region$Table$Base 0x08003504 Number 0 anon$obj.o(Region$Table)9 S& T# T" e* z3 \1 }9 {
- Region$Table$Limit 0x08003524 Number 0 anon$obj.o(Region$Table)) g0 n" E. w: f" z+ P9 t
- VectorTable 0x20000000 Data 192 main.o(.ARM.__AT_0x20000000) //向量表位置为0x200000000 H4 I# `8 a* F4 d
- SystemCoreClock 0x200000c0 Data 4 system_stm32f0xx.o(.data) //其他全局变量的起始位置为0x200000C0
5 s* C( A$ a7 M. @" C) E - AHBPrescTable 0x200000c4 Data 16 system_stm32f0xx.o(.data)
: t. m- l& S+ w7 B0 `0 f - GPIO_PORT 0x200000d4 Data 16 stm320518_eval.o(.data). x9 F) [. p9 n: _) m8 e9 s
- BUTTON_PORT 0x200000e4 Data 28 stm320518_eval.o(.data)
, ^/ @$ w2 n0 _: v" {1 m/ J - COM_USART 0x20000100 Data 4 stm320518_eval.o(.data)
, c5 Y) t1 H& S9 [% j- D - COM_TX_PORT 0x20000104 Data 4 stm320518_eval.o(.data)3 w* C+ P# t2 m, q& Q/ m
- COM_RX_PORT 0x20000108 Data 4 stm320518_eval.o(.data)7 }+ F3 v* E1 g" u! C, s: x+ r
- __initial_sp 0x20000510 Data 0 startup_stm32f0xx.o(STACK); ~8 m0 d+ C0 i2 p" G3 n! J
复制代码
U7 Z6 Y: I, ^. `7 T如上所述,中断向量表被编译在0x20000000,内存的起始位置,而system_stm32f0xx.c下的全局变量SystemCoreClock被KEIL编译成放在紧挨着的0x200000C0的位置,与预期完全相符。分别将IAP与APP烧录进FLASH,测试可以正常运行。
* o) _/ p' k+ s; H u% f( e: a* D. P
注:在KEIL下,必须存在IAP才能调试APP!,这点是与IAR不同的。
5 Z4 f5 g2 `0 w# N- }3 }' \
" c$ E% p" Q! `. l* R v1 P- u0 r2 S' z* E# V
3 IAR下移植
+ G, }6 h$ V i5 Q) @% O* \在IAR下的IAP没有什么特殊的,主要还是看APP的配置。
$ {! U1 M3 p& U7 }3 I5 S
( Y, `( W J2 x: c使用IAR打开APP工程,修改device为STM32F070:/ l; {( {0 v3 K: }
* A% A1 ]) ~, }$ ^9 s/ B3 k3 q0 S# ?- ]) o, y& A1 h: {
$ A8 z7 S& g$ M) j$ b链接配置:
/ z6 V# x9 A6 g; e1 Z1 q0 y2 B! c O+ t
中断向量表:) \8 L1 W" r7 G4 p* l/ i( P0 A
1 X' s+ z7 C/ U" ~
5 D, c5 d, ]8 k7 X
; o; [! R/ T. `: r" U4 H3 H' ^% p
内存映射:: y0 S0 h- Y& q2 ^+ Y* m! {5 U
6 B v% Q' F4 a9 v3 O
( U9 W4 ]: Y1 }: S( W1 s
- \1 T0 \. }1 W
1 Z, L4 x# \% Z4 j# j* l- o0 S
. _$ U w3 Y8 o6 I9 B如上,APP存放在FLASH的位置0x8003000,内存还是设置为:0x20000000.. `8 ?0 m, @, T S
3 ~ e) g7 C1 y6 X7 {: M4 g编译后,打开对应的map文件如下所示:) m- }- s8 ]; r9 \# J* K
3 w/ m- U1 x3 b/ q" |& Y) U
- Entry Address Size Type Object
' c% ^! @, I7 v8 F \) b: M/ m - ----- ------- ---- ---- ------
' b T* j2 s3 K6 w9 ~ - .iar.init_table$Base 0x080034fc -- Gb - Linker created -& T4 v% }( G7 U9 B; R- `# r
- .iar.init_table$Limit 0x08003510 -- Gb - Linker created -
& p' G; ] M$ ] j. m# \ - ?main 0x08003511 Code Gb cmain.o [4]$ W9 {7 ?- {8 H# q( `! Q8 m. Z
- CSTACK$Base 0x200000d8 -- Gb - Linker created -2 K5 W; j5 k! H }% V: ^7 ]7 s4 o
- CSTACK$Limit 0x200010d8 -- Gb - Linker created -
$ ]; |4 C+ J( y; |3 @ - Delay 0x080031e3 0x10 Code Gb main.o [1]: e3 K' {! }& C0 Z. u$ d
- GPIO_PIN 0x080035a0 0x8 Data Gb stm320518_eval.o [1]
) @) I( [( x1 D9 D! v! G - GPIO_PORT 0x200000c0 0x10 Data Gb stm320518_eval.o [1] //stm320518_eval.c文件内的全局变量GPIO_PORT数组存放在0x200000c0
; k, q* H8 Q) O) w( r7 H6 [ - HardFault_Handler 0x08003573 0x4 Code Gb stm32f0xx_it.o [1]
5 j2 Y w# s0 t. v2 X- q4 l8 O - NMI_Handler 0x08003571 0x2 Code Gb stm32f0xx_it.o [1]$ _5 X2 _1 S+ ]# }$ |" S
- NVIC_SetPriority 0x080030c1 0x84 Code Lc main.o [1]$ Q: j6 @" Y- O7 l; V
- PendSV_Handler 0x08003579 0x2 Code Gb stm32f0xx_it.o [1]
, i# V- [% T8 ^% k z( z( M - RCC_APB2PeriphClockCmd 0x08003229 0x20 Code Gb stm32f0xx_rcc.o [1]
5 O9 z- C5 U& ] - Region$Table$Base 0x080034fc -- Gb - Linker created -
; Q+ b8 b2 H w* w! w$ K& B - Region$Table$Limit 0x08003510 -- Gb - Linker created -4 D9 f) s5 L& D
- STM_EVAL_LEDToggle 0x08003315 0x26 Code Gb stm320518_eval.o [1]3 T$ U3 q( V l
- SVC_Handler 0x08003577 0x2 Code Gb stm32f0xx_it.o [1]9 F4 e% i8 A: d1 d: Z
- SYSCFG_MemoryRemapConfig' {: C, [ w w1 H- m j
- 0x0800324d 0x14 Code Gb stm32f0xx_syscfg.o [1]
: {, c; j; f8 A3 R& k- E - SetSysClock 0x080033b7 0xbe Code Lc system_stm32f0xx.o [1]
2 J0 M$ O, M- ^9 S! o8 A9 [ - SysTick_Config 0x08003145 0x32 Code Lc main.o [1]
; u; e- o5 e6 w) k - SysTick_Handler 0x0800357b 0x8 Code Gb stm32f0xx_it.o [1]
5 T& y1 L J6 v0 E - SystemCoreClock 0x200000d0 0x4 Data Gb system_stm32f0xx.o [1]
" h* s2 z P8 w- L; z% V - SystemInit 0x08003349 0x6e Code Gb system_stm32f0xx.o [1]* M% d: Q! ~: x
- TimingDelay 0x200000d4 0x4 Data Lc main.o [1]
' R1 R" c$ s. p4 H& w# V" h/ [* m - TimingDelay_Decrement 0x080031f3 0x16 Code Gb main.o [1]
( L; I( m& i) i6 H6 J9 L, @ - VectorTable 0x20000000 0xc0 Data Gb main.o [1] //向量表编译位置为0x20000000
" L. I {1 p( N% w1 | - __aeabi_idiv0 0x08003345 Code Gb IntDivZer.o [4]
) l o4 ~( M) X+ h; N4 q& R - __aeabi_uidiv 0x08003265 Code Gb I32DivModFast.o [4]
; }) o+ k' n2 u) k5 Q7 f a$ s - __aeabi_uidivmod 0x08003265 Code Gb I32DivModFast.o [4]5 \' y+ S- q% _1 v4 M
- __cmain 0x08003511 Code Gb cmain.o [4]
7 e9 T8 {+ D$ e' S$ L - __exit 0x08003545 0x14 Code Gb exit.o [5]
( g0 |4 P5 S. ~' X1 i - __iar_copy_init3 0x080034a5 0x30 Code Gb copy_init3.o [4]2 F6 T5 U9 _. m5 [& M
- __iar_data_init3 0x080034d5 0x28 Code Gb data_init.o [4]1 G% F* E% L" G G6 V8 N7 V9 b1 G
- __iar_program_start 0x08003595 Code Gb cstartup_M.o [4]2 b2 a9 `& B0 I. Y8 n
- __low_level_init 0x0800352b 0x4 Code Gb low_level_init.o [3]
! o4 [0 c$ \% ~! [5 Z: t# ^1 R - __vector_table 0x08003000 Data Gb startup_stm32f0xx.o [1]
) J0 k' Q; Q, f - _call_main 0x0800351d Code Gb cmain.o [4]) U5 A* ^" J+ z1 i( r) S
- _exit 0x08003539 Code Gb cexit.o [4]1 D) k8 o* _2 K/ D% h! |
- _main 0x08003527 Code Gb cmain.o [4]( j# `+ F$ U6 A9 D
- exit 0x0800352f 0x8 Code Gb exit.o [3]$ c* c6 C5 H d% @6 u1 |
- main <span style="background-color: rgb(255, 255, 255);"> </span><span style="background-color: rgb(255, 255, 255);"> 0x08003177 0x6c Code Gb main.o [1]</span>
复制代码 : b: G( U' V+ W5 \* b2 d- H9 u6 z
如上所示,在IAR编译下,中断向量表被编译在0x20000000,内存的起始位置,而stm320518_eval.c下的全局变量GPIO_PORT被IAR编译成放在紧挨着的0x200000C0的位置。分别将IAP与APP烧录进FLASH,测试可以正常运行。
5 x1 U' i0 W7 Q& ]; e; f# q) G' k
注:从IAR工程的链接配置来看,并没有像KEIL那样配置RAM位置为:0x2000000,编译后的结果向量表也不会与其他全局变量相冲突,可见IAR编译器已经自动计算并避免这种冲突,不像KEIL那样会出现链接错误,以此来提示用户。2 R1 q \7 `4 g+ B+ f
z1 O7 C; @$ e2 r1 u9 T
另外:在IAR下,在不存在IAP的情况下也是可以调试APP的,这点是KEIL所不具备的功能,看样子,IAR在细节的处理上比KEIL要好。3 U" R$ W5 s$ ^* I# P- l" E' }
, d8 @! p' I0 |# W4 I
, [- M. b0 I* r2 n
! {/ {# m" i& C, V5 r |