
OLED 显示实验 前面所有的介绍都没有涉及到液晶显示,从这一节开始,我们将陆续向大家介绍几款液晶 显示模块。本节我们将向大家介绍相对简单的 OLED。本节分为如下几个部分: 1 OLED 简介 OLED,即有机发光二极管(Organic Light-Emitting Diode),又称为有机电激光显示(Organic Electroluminesence Display, OELD)。OLED 由于同时具备自发光,不需背光源、对比度高、 厚度薄、视角广、反应速度快、可用于挠曲性面板、使用温度范围广、构造及制程较简单等优 异之特性,被认为是下一代的平面显示器新兴应用技术。 LCD 都需要背光,而 OLED 不需要,因为它是自发光的。这样同样的显示,OLED 效果要 来得好一些。OLED 的尺寸难以大型化,但是分辨率确可以做到很高。这一节,我们使用的是 ALINETEK 的 OLED 显示模块,该模块有以下特点: 1)模块有单色和双色两种可选,单色为纯白色,而双色则为黄蓝双色。 2)尺寸小,显示尺寸为 0.96 寸,而模块的尺寸仅为 27mm*26mm 大小。 3)高分辨率,该模块的分辨率为 128*64。 4)多种接口方式,该模块提供了总共 5 种接口包括:6800、8080 两种并行接口方式、3 线或 4 线的穿行 SPI 接口方式,、IIC 接口方式(只需要 2 根线就可以控制 OLED 了!)。 5)不需要高压,直接接 3.3V 就可以工作了。 这里要提醒大家的是,该模块不和 5.0V 接口兼容,所以请大家在使用的时候一定要小心, 别接到 5V 的系统上去,否则可能烧坏模块。以上 5 种模式通过模块的 BS0~2 设置,BS0~2 的 设置与模块接口模式的关系如下表: ![]() 上表中:“1”代表接 VCC,而“0”代表接 GND。该模块的外观图如下: ![]() ![]() 该模块采用 8*2 的 2.54 排针与外部连接,其引线图如上图所示,总共有 16 个管脚,在 16 条线中,我们只用了 15 条,有一个是悬空的。15 条线中,电源和地线占了 2 条,还剩下 13 条 信号线。在不同模式下,我们需要的信号线数量是不同的,在 8080 模式下,需要全部 13 条, 而在 IIC 模式下,仅需要 2 条线就够了!这其中有一条是共同的,那就是复位线 RST(RES), 该线我们可以直接接在 MCU 的复位上(要先确认复位方式一样),这样可以省掉一条线。 ALIENTEK OLED 模块的控制器是 SSD1306,这一节,我们将学习如何通过 STM32 来控 制该模块显示字符和数字,本节实例将可以支持 2 种方式与 OLED 模块连接,一种是 8080 的 并口方式,另外一种是 4 线 SPI 方式。 首先我们介绍一下模块的 8080 并行接口,8080 并行接口的发明者是 INTEL,该总线也被 广泛应用于各类液晶显示器,ALIENTEK OLED 模块也提供了这种接口,使得 MCU 可以快速 的访问 OLED。ALIENTEK OLED 模块的 8080 接口方式需要如下一些信号线: CS:OLED 片选信号。 WR:向 OLED 写入数据。 RD:从 OLED 读取数据。 D[7:0]:8 位双向数据线。 RST(RES):硬复位 OLED。 DC:命令/数据标志(0,读写命令;1,读写数据)。 模块的 8080 并口读/写的过程为:先根据要写入/读取的数据的类型,设置 DC 为高(数据) /低(命令),然后拉低片选,选中 SSD1306,接着我们根据是读数据,还是要写数据置 RD/WR 为低,然后: 在 RD 的上升沿, 使数据锁存到数据线(D[7:0])上; 在 WR 的上升沿,使数据写入到 SSD1306 里面; SSD1306 的 8080 并口写时序图如下: ![]() ![]() ![]() 在 8080 方式下读数据操作的时候,我们有时候(例如读显存的时候)需要一个假读命 (Dummy Read),以使得微控制器的操作频率和显存的操作频率相匹配。在读取真正的数据之 前,由一个的假读的过程。这里的假读,其实就是第一个读到的字节丢弃不要,从第二个开始, 才是我们真正要读的数据。 一个典型的读显存的时序图,如下图所示: ![]() 可以看到,在发送了列地址之后,开始读数据,第一个是 Dummy Read,也就是假读,我 们从第二个开始,才算是真正有效的数据。 并行接口模式就介绍到这里,我们接下来介绍一下 4 线串行(SPI)方式,4 先串口模式使 用的信号线有如下几条: CS:OLED 片选信号。 RST(RES):硬复位 OLED。 DC:命令/数据标志(0,读写命令;1,读写数据)。 SCLK:串行时钟线。在 4 线串行模式下,D0 信号线作为串行时钟线 SCLK。 SDIN:串行数据线。在 4 线串行模式下,D1 信号线作为串行数据线 SDIN。 模块的 D2 需要悬空,其他引脚可以接到 GND。在 4 线串行模式下,只能往模块写数据而 不能读数据。 在 4 线 SPI 模式下,每个数据长度均为 8 位,在 SCLK 的上升沿,数据从 SDIN 移入到 SSD1306,并且是高位在前的。DC 线还是用作命令/数据的标志线。在 4 线 SPI 模式下,写操 作的时序如下: ![]() 4 线串行模式就为大家介绍到这里。其他还有几种模式,在 SSD1306 的数据手册上都有详 细的介绍,如果要使用这些方式,请大家参考该手册。 接下来,我们介绍一下模块的显存,SSD1306 的显存总共为 128*64bit 大小,SSD1306 将 这些显存分为了 8 页,其对应关系如下: ![]() 可以看出,SSD1306 的每页包含了 128 个字节,总共 8 页,这样刚好是 128*64 的点阵大 小。因为每次写入都是按字节写入的,这就存在一个问题,如果我们使用只写方式操作模块, 那么,每次要写 8 个点,这样,我们在画点的时候,就必须把要设置的点所在的字节的每个位 都搞清楚当前的状态(0/1?),否则写入的数据就会覆盖掉之前的状态,结果就是有些不需要 显示的点,显示出来了,或者该显示的没有显示了。这个问题在能读的模式下,我们可以先读 出来要写入的那个字节,得到当前状况,在修改了要改写的位之后再写进 GRAM,这样就不会 影响到之前的状况了。但是这样需要能读 GRAM,对于 3 线或 4 线 SPI 模式,模块是不支持读 的,而且读->改->写的方式速度也比较慢。 所以我们采用的办法是在 STM32 的内部建立一个 OLED 的 GRAM (共 128 个字节),在每 次修改的时候,只是修改 STM32 上的 GRAM (实际上就是 SRAM),在修改完了之后,一次性 把 STM32 上的 GRAM 写入到 OLED 的 GRAM。当然这个方法也有坏处,就是对于那些 SRAM 很小的单片机(比如 51 系列)就比较麻烦了。 SSD1306 的命令比较多,这里我们仅介绍几个比较常用的命令,这些命令如下表: ![]() 第一个命令为 0X81,用于设置对比度的,这个命令包含了两个字节,第一个 0X81 为命令, 随后发送的一个字节为要设置的对比度的值。这个值设置得越大屏幕就越亮。 第二个命令为 0XAE/0XAF。0XAE 为关闭显示命令;0XAF 为开启显示命令。 第三个命令为 0X8D,该指令也包含 2 个字节,第一个为命令字,第二个为设置值,第二 个字节的 BIT2 表示电荷泵的开关状态,该位为 1,则开启电荷泵,为 0 则关闭。在模块初始化 的时候,这个必须要开启,否则是看不到屏幕显示的。 第四个命令为 0XB0~B7,该命令用于设置页地址,其低三位的值对应着 GRAM 的页地址。 第五个指令为 0X00~0X0F,该指令用于设置显示时的起始列地址低四位。 第六个指令为 0X10~0X1F,该指令用于设置显示时的起始列地址高四位。 其他命令,我们就不在这里一一介绍了,大家可以参考 SSD1306 datasheet 的第 28 页。从 这页开始,对 SSD1306 的指令有详细的介绍。OLED 的介绍就到此为止,我们重点向大家介绍了 ALIENTEK OLED 模块的相关知识,接 下来我们将使用这个模块来显示字符和数字。通过以上介绍,我们可以得出 OLED 显示需要的 相关设置步骤如下: 1)设置 STM32 与 OLED 模块相连接的 IO。 这一步,先将我们与 OLED 模块相连的 IO 口设置为输出,具体使用哪些 IO 口,这里需要根据 连接电路以及 OLED 模块所设置的通讯模式来确定。这些将在硬件设计部分向大家介绍。 2)初始化 OLED 模块。 其实这里就是上面的初始化框图的内容,通过对 OLED 相关寄存器的初始化,来启动 OLED 的 显示。为后续显示字符和数字做准备。 3)通过函数将字符和数字显示到 OLED 模块上。 这里就是通过我们设计的程序,将要显示的字符送到 OLED 模块就可以了,这些函数将在软件 设计部分向大家介绍。 通过以上三步,我们就可以使用 ALIENTEK OLED 模块来显示字符和数字了,在后面我们还将 会给大家介绍显示汉字的方法。这一部分就先介绍到这里。 3 软件设计 软件设计我们依旧在之前的工程上面增加,首先在 HARDWARE 文件夹下新建一个 OLED 的文件夹。然后打开 USER 文件夹下的工程,新建一个 oled.c 的文件和 oled.h 的头文件,保存 在 OLED 文件夹下,并将 OLED 文件夹加入头文件包含路径。 打开 oled.c,输入如下代码: #include "oled.h" #include "stdlib.h" #include "font.h" #include "delay.h" //OLED 的显存 //存放格式如下. //[0]0 1 2 3 ... 127 //[1]0 1 2 3 ... 127 //[2]0 1 2 3 ... 127 //[3]0 1 2 3 ... 127 //[4]0 1 2 3 ... 127 //[5]0 1 2 3 ... 127 //[6]0 1 2 3 ... 127 //[7]0 1 2 3 ... 127 u8 OLED_GRAM[128][8]; //更新显存到 LCD void OLED_Refresh_Gram(void) { u8 i,n; for(i=0;i<8;i++) { OLED_WR_Byte (0xb0+i,OLED_CMD); //设置页地址(0~7) OLED_WR_Byte (0x00,OLED_CMD); //设置显示位置—列低地址 OLED_WR_Byte (0x10,OLED_CMD); //设置显示位置—列高地址 for(n=0;n<128;n++)OLED_WR_Byte(OLED_GRAM[n],OLED_DATA); } } #if OLED_MODE==1 //向 SSD1306 写入一个字节。 //dat:要写入的数据/命令 //cmd:数据/命令标志 0,表示命令;1,表示数据; void OLED_WR_Byte(u8 dat,u8 cmd) { DATAOUT(dat); OLED_RS=cmd; OLED_CS=0; OLED_WR=0; OLED_WR=1; OLED_CS=1; OLED_RS=1; } #else //向 SSD1306 写入一个字节。 //dat:要写入的数据/命令 //cmd:数据/命令标志 0,表示命令;1,表示数据; void OLED_WR_Byte(u8 dat,u8 cmd) { u8 i; OLED_RS=cmd; //写命令 OLED_CS=0; for(i=0;i<8;i++) { OLED_SCLK=0; if(dat&0x80)OLED_SDIN=1; else OLED_SDIN=0; OLED_SCLK=1; dat<<=1; } OLED_CS=1; OLED_RS=1; } #endif //开启 OLED 显示 void OLED_Display_On(void) { OLED_WR_Byte(0X8D,OLED_CMD); //SET DCDC 命令 OLED_WR_Byte(0X14,OLED_CMD); //DCDC ON OLED_WR_Byte(0XAF,OLED_CMD); //DISPLAY ON } //关闭 OLED 显示 void OLED_Display_Off(void) { OLED_WR_Byte(0X8D,OLED_CMD); //SET DCDC 命令 OLED_WR_Byte(0X10,OLED_CMD); //DCDC OFF OLED_WR_Byte(0XAE,OLED_CMD); //DISPLAY OFF } //清屏函数,清完屏,整个屏幕是黑色的!和没点亮一样!!! void OLED_Clear(void) { u8 i,n; for(i=0;i<8;i++)for(n=0;n<128;n++)OLED_GRAM[n]=0X00; OLED_Refresh_Gram();//更新显示 } //画点 //x:0~127 //y:0~63 //t:1 填充 0,清空 void OLED_DrawPoint(u8 x,u8 y,u8 t) { u8 pos,bx,temp=0; if(x>127||y>63)return;//超出范围了. pos=7-y/8; bx=y%8; temp=1<<(7-bx); if(t)OLED_GRAM[x][pos]|=temp; else OLED_GRAM[x][pos]&=~temp; } //x1,y1,x2,y2 填充区域的对角坐标 //确保 x1<=x2;y1<=y2 0<=x1<=127 0<=y1<=63 //dot:0,清空;1,填充 void OLED_Fill(u8 x1,u8 y1,u8 x2,u8 y2,u8 dot) { u8 x,y; for(x=x1;x<=x2;x++) { for(y=y1;y<=y2;y++)OLED_DrawPoint(x,y,dot); } OLED_Refresh_Gram();//更新显示 } //在指定位置显示一个字符,包括部分字符 //x:0~127 //y:0~63 //mode:0,反白显示;1,正常显示 //size:选择字体 16/12 void OLED_ShowChar(u8 x,u8 y,u8 chr,u8 size,u8 mode) { u8 temp,t,t1; u8 y0=y; chr=chr-' ';//得到偏移后的值 for(t=0;t<size;t++) { if(size==12)temp=asc2_1206[chr][t]; //调用 1206 字体 else temp=asc2_1608[chr][t]; //调用 1608 字体 for(t1=0;t1<8;t1++) { if(temp&0x80)OLED_DrawPoint(x,y,mode); else OLED_DrawPoint(x,y,!mode); temp<<=1; y++; if((y-y0)==size) { y=y0; x++; break; } } } } //m^n 函数 u32 mypow(u8 m,u8 n) { u32 result=1; while(n--)result*=m; return result; } //显示 2 个数字 //x,y :起点坐标 //len :数字的位数 //size:字体大小 //mode:模式 0,填充模式;1,叠加模式 //num:数值(0~4294967295); void OLED_ShowNum(u8 x,u8 y,u32 num,u8 len,u8 size) { u8 t,temp; u8 enshow=0; for(t=0;t<len;t++) { temp=(num/mypow(10,len-t-1))%10; if(enshow==0&&t<(len-1)) { if(temp==0) { OLED_ShowChar(x+(size/2)*t,y,' ',size,1); continue; }else enshow=1; } OLED_ShowChar(x+(size/2)*t,y,temp+'0',size,1); } } //显示字符串 //x,y:起点坐标 //*p:字符串起始地址 //用 16 字体 void OLED_ShowString(u8 x,u8 y,const u8 *p) { #define MAX_CHAR_POSX 122 #define MAX_CHAR_POSY 58 while(*p!='\0') { if(x>MAX_CHAR_POSX){x=0;y+=16;} if(y>MAX_CHAR_POSY){y=x=0;OLED_Clear();} OLED_ShowChar(x,y,*p,16,1); x+=8; p++; } } //初始化 SSD1303 void OLED_Init(void) { RCC->APB2ENR|=1<<3; //使能 PORTB 时钟 RCC->APB2ENR|=1<<4; //使能 PORTC 时钟 #if OLED_MODE==1 RCC->APB2ENR|=1<<0; //开启辅助时钟 AFIO->MAPR=0X04000000; //关闭 JTAG GPIOB->CRL=0X33333333; GPIOB->ODR|=0XFFFF; GPIOC->CRH&=0XFFFFFF00; GPIOC->CRL&=0X00FFFFFF; GPIOC->CRH|=0X00000033; GPIOC->CRL|=0X33000000; GPIOC->ODR|=0X03C0; #else GPIOB->CRL&=0XFFFFFF00; GPIOB->CRL|=0XF0000033; GPIOB->ODR|=0X03; GPIOC->CRH&=0XFFFFFF00; GPIOC->CRH|=0X00000033; GPIOC->ODR|=3<<8; #endif //OLED_RST=0; delay_ms(100); OLED_RST=1; OLED_WR_Byte(0xAE,OLED_CMD); //关闭显示 OLED_WR_Byte(0xD5,OLED_CMD); //设置时钟分频因子,震荡频率 OLED_WR_Byte(80,OLED_CMD); //[3:0],分频因子;[7:4],震荡频率 OLED_WR_Byte(0xA8,OLED_CMD); //设置驱动路数 OLED_WR_Byte(0X3F,OLED_CMD); //默认 0X3F(1/64) OLED_WR_Byte(0xD3,OLED_CMD); //设置显示偏移 OLED_WR_Byte(0X00,OLED_CMD); //默认为 0 OLED_WR_Byte(0x40,OLED_CMD); //设置显示开始行 [5:0],行数. OLED_WR_Byte(0x8D,OLED_CMD); //电荷泵设置 OLED_WR_Byte(0x14,OLED_CMD); //bit2,开启/关闭 OLED_WR_Byte(0x20,OLED_CMD); //设置内存地址模式 OLED_WR_Byte(0x02,OLED_CMD); //[1:0],00,列地址模式;01,行地址模式;10,页地址模式;默认 10; OLED_WR_Byte(0xA1,OLED_CMD); //段重定义设置,bit0:0,0->0;1,0->127; OLED_WR_Byte(0xC0,OLED_CMD); //设置 COM 扫描方向;bit3:0,普通模式;1,重定义模式 COM[N-1]->COM0;N:驱动路数 OLED_WR_Byte(0xDA,OLED_CMD); //设置 COM 硬件引脚配置 OLED_WR_Byte(0x12,OLED_CMD); //[5:4]配置 OLED_WR_Byte(0x81,OLED_CMD); //对比度设置 OLED_WR_Byte(0xEF,OLED_CMD); //1~255;默认 0X7F (亮度设置,越大越亮) OLED_WR_Byte(0xD9,OLED_CMD); //设置预充电周期 OLED_WR_Byte(0xf1,OLED_CMD); //[3:0],PHASE 1;[7:4],PHASE 2; OLED_WR_Byte(0xDB,OLED_CMD); //设置 VCOMH 电压倍率 OLED_WR_Byte(0x30, OLED_CMD); //[6:4] 000, 0.65*vcc;001, 0.77*vcc;011, 0.83*vcc; OLED_WR_Byte(0xA4,OLED_CMD); //全局显示开启;bit0:1,开启;0,关闭; OLED_WR_Byte(0xA6,OLED_CMD); //设置显示方式;bit0:1,反相显示;0,正常显示 OLED_WR_Byte(0xAF,OLED_CMD); //开启显示 OLED_Clear(); } 这里代码明显比之前的例程多了,函数也比较多,这里我们仅针对几个比较重要的函数进 行介绍。 首先要介绍的是我们定义在 STM32 内部的 GRAM,u8 OLED_GRAM[128][8];此部分 GRAM 对应 OLED 模块上的 GRAM。在操作的时候,我们只要修改 STM32 内部的 GRAM 就 可以了,然后通过 OLED_Refresh_Gram 函数把 GRAM 一次刷新到 OLED 的 GRAM 上。该函 数代码如下: void OLED_Refresh_Gram(void) { u8 i,n; for(i=0;i<8;i++) { OLED_WR_Byte (0xb0+i,OLED_CMD);//设置页地址(0~7) OLED_WR_Byte (0x00,OLED_CMD); //设置显示位置—列低地址 OLED_WR_Byte (0x10,OLED_CMD); //设置显示位置—列高地址 for(n=0;n<128;n++)OLED_WR_Byte(OLED_GRAM[n],OLED_DATA); } } 函数先设置页地址,然后写入列地址(也就是纵坐标),然后从 0 开始写入 128 个字节,写 满该页,最后循环把 8 页的内容都写入,就实现了整个从 STM32 显存到 OLED 显存的拷贝。 。 OLED_Refresh_Gram 函数还用到了一个外部函数 OLED_WR_Byte,该函数直接和硬件相关, 该函数代码如下: #if OLED_MODE==1 void OLED_WR_Byte(u8 dat,u8 cmd) { DATAOUT(dat); OLED_RS=cmd; OLED_CS=0; OLED_WR=0; OLED_WR=1; OLED_CS=1; OLED_RS=1; } #else void OLED_WR_Byte(u8 dat,u8 cmd) { u8 i; OLED_RS=cmd; //写命令 OLED_CS=0; for(i=0;i<8;i++) { OLED_SCLK=0; if(dat&0x80)OLED_SDIN=1; else OLED_SDIN=0; OLED_SCLK=1; dat<<=1; } OLED_CS=1; OLED_RS=1; } #endif 这里有 2 个一样的函数,通过宏定义 OLED_MODE 来决定使用哪一个。如果 OLED_MODE=1,就定义为并口模式,选择第一个函数,而如果为 0,则为 4 线串口模式,选 择第二个函数。这两个函数输入参数均为 2 个:dat 和 cmd,dat 为要写入的数据,cmd 则表明 该数据是命令还是数据。这两个函数的时序操作就是根据上面我们对 8080 接口以及 4 线 SPI 接口的时序来编写的。 OLED_GRAM[128][8]中的 128 代表列数,也就是 x 坐标,而 8 代表的是页,每个代表 8 个列,从高到底对应列数从小到大。比如,我们要在 x=100,y=29 这个点写入 1,则可以用这 个句子实现: OLED_GRAM[100][4]|=1<<2; 一个通用的在点(x,y)置 1 表达式为: OLED_GRAM[x][y/8]|=1<<(7-y%8); 因此,我们可以得出下一个画点函数, void OLED_DrawPoint(u8 x, u8 y, u8 t);代码如下: void OLED_DrawPoint(u8 x,u8 y,u8 t) { u8 pos,bx,temp=0; if(x>127||y>63)return;//超出范围了. pos=7-y/8; bx=y%8; temp=1<<(7-bx); if(t)OLED_GRAM[x][pos]|=temp; else OLED_GRAM[x][pos]&=~temp; } |
好文章,值得学习