
STM32产生PWM是非常的方便的,要需要简单的设置定时器,即刻产生! (1)使能定时器时钟:RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM3, ENABLE); (2)定义相应的GPIO: /* PA2,3,4,5,6输出->Key_Up,Key_Down,Key_Left,Key_Right,Key_Ctrl */ GPIO_InitStructure.GPIO_Pin = GPIO_Pin_2|GPIO_Pin_3|GPIO_Pin_4|GPIO_Pin_5|GPIO_Pin_6; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IPU; //下拉接地,检测输入的高电平 GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz; //50M时钟速度 GPIO_Init(GPIOA, &GPIO_InitStructure); /* PA7用于发出PWM波 */ GPIO_InitStructure.GPIO_Pin = GPIO_Pin_7; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP;GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz; //50M时钟速度 GPIO_Init(GPIOA, &GPIO_InitStructure); (3)如果是产生PWM(频率不变,占空比可变),记得打开PWM控制,在TIM_Configuration()中。 TIM_Cmd(TIM3,ENABLE); /* TIM1 Main Output Enable */ TIM_CtrlPWMOutputs(TIM1,ENABLE); 利用定时器产生不同频率的PWM有时候,需要产生不同频率的PWM,这个时候,设置与产生相同PWM的程序,有关键的不一样。 (一) 设置的原理 利用改变定时器输出比较通道的捕获值,当输出通道捕获值产生中断时,在中断中将捕获值改变,这时, 输出的I/O会产生一个电平翻转,利用这种办法,实现不同频率的PWM输出。 (二)关键设置 在定时器设置中:TIM_OC2PreloadConfig(TIM3, TIM_OCPreload_Disable); 在中断函数中: if (TIM_GetITStatus(TIM3, TIM_IT_CC2) != RESET) { TIM_ClearITPendingBit(TIM3, TIM_IT_CC2); capture = TIM_GetCapture2(TIM3); TIM_SetCompare2(TIM3, capture + Key_Value); } 一个定时器四个通道,分别产生不同频率(这个例子网上也有) vu16 CCR1_Val = 32768; vu16 CCR2_Val = 16384; vu16 CCR3_Val = 8192; vu16 CCR4_Val = 4096; void TIM_Configuration(void) { TIM_TimeBaseInitTypeDef TIM_TimeBaseStructure; TIM_OCInitTypeDef TIM_OCInitStructure; /* TIM2 clock enable */ RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM2, ENABLE); /* --------------------------------------------------------------- TIM2 Configuration: Output Compare Toggle Mode: TIM2CLK = 36 MHz, Prescaler = 0x2, TIM2 counter clock = 12 MHz CC1 update rate = TIM2 counter clock / CCR1_Val = 366.2 Hz CC2 update rate = TIM2 counter clock / CCR2_Val = 732.4 Hz CC3 update rate = TIM2 counter clock / CCR3_Val = 1464.8 Hz CC4 update rate = TIM2 counter clock / CCR4_Val = 2929.6 Hz --------------------------------------------------------------- */ /* Time base configuration */ TIM_TimeBaseStructure.TIM_Period = 65535; TIM_TimeBaseStructure.TIM_Prescaler = 2; TIM_TimeBaseStructure.TIM_ClockDivision = 0; TIM_TimeBaseStructure.TIM_CounterMode = TIM_CounterMode_Up; TIM_TimeBaseInit(TIM2, &TIM_TimeBaseStructure); /* Channel 1 Configuration in PWM mode */ TIM_OCInitStructure.TIM_OCMode = TIM_OCMode_Toggle; //PWM模式2 TIM_OCInitStructure.TIM_OutputState = TIM_OutputState_Enable; //正向通道有效 TIM_OCInitStructure.TIM_OutputNState = TIM_OutputNState_Disable;//反向通道无效 TIM_OCInitStructure.TIM_Pulse = CCR1_Val;//占空时间 TIM_OCInitStructure.TIM_OCPolarity = TIM_OCPolarity_Low; //输出极性 TIM_OCInitStructure.TIM_OCNPolarity = TIM_OCNPolarity_High; //互补端的极性 TIM_OCInitStructure.TIM_OCIdleState = TIM_OCIdleState_Set; TIM_OCInitStructure.TIM_OCNIdleState = TIM_OCIdleState_Reset; TIM_OC1Init(TIM2,&TIM_OCInitStructure); //通道1 TIM_OC1PreloadConfig(TIM2, TIM_OCPreload_Disable); TIM_OCInitStructure.TIM_Pulse = CCR2_Val; //占空时间 TIM_OC2Init(TIM2,&TIM_OCInitStructure);//通道2 TIM_OC2PreloadConfig(TIM2, TIM_OCPreload_Disable); - d( u" E9 q* ]! O& {, o TIM_OCInitStructure.TIM_Pulse = CCR3_Val; //占空时间 TIM_OC3Init(TIM2,&TIM_OCInitStructure); //通道3 TIM_OC3PreloadConfig(TIM2, TIM_OCPreload_Disable); TIM_OCInitStructure.TIM_Pulse = CCR4_Val; //占空时间 TIM_OC4Init(TIM2,&TIM_OCInitStructure);//通道4 TIM_OC4PreloadConfig(TIM2, TIM_OCPreload_Disable); /* TIM2 counter enable */ TIM_Cmd(TIM2,ENABLE); /* TIM2 Main Output Enable */ //TIM_CtrlPWMOutputs(TIM2,ENABLE); /* TIM IT enable */ TIM_ITConfig(TIM2, TIM_IT_CC1 | TIM_IT_CC2 | TIM_IT_CC3 | TIM_IT_CC4, ENABLE); } void GPIO_Configuration(void) { GPIO_InitTypeDef GPIO_InitStructure; /*允许总线CLOCK,在使用GPIO之前必须允许相应端的时钟. 从STM32的设计角度上说,没被允许的端将不接入时钟,也就不会耗能, 这是STM32节能的一种技巧,*/ RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA, ENABLE); RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOB, ENABLE); RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOC, ENABLE); RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOD, ENABLE); # @! w O, E: @( G9 t1 A, ?6 w% l; t3 w; Y3 c /* PA2,3,4,5,6,7输出->LED1,LED2,LED3,LED4,LED5,LED6 */ GPIO_InitStructure.GPIO_Pin = GPIO_Pin_2|GPIO_Pin_3|GPIO_Pin_4|GPIO_Pin_5|GPIO_Pin_6|GPIO_Pin_7; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_OD; //开漏输出 GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz; //50M时钟速度 GPIO_Init(GPIOA, &GPIO_InitStructure); ' `1 L# c- n5 O( e, ` /* PB0,1输出->LED7,LED8*/ GPIO_InitStructure.GPIO_Pin = GPIO_Pin_0|GPIO_Pin_1; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_OD; //开漏输出 GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz; //50M时钟速度 GPIO_Init(GPIOB, &GPIO_InitStructure); / D- J" }( R7 f" d8 x/* PA0,1->KEY_LEFT,KEY_RIGHT*/ GPIO_InitStructure.GPIO_Pin = GPIO_Pin_0|GPIO_Pin_1; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IPU;? //上拉输入 GPIO_Init(GPIOA, &GPIO_InitStructure); Q3 N( r& n3 J% Z8 Y/* PC13->KEY_UP*/ GPIO_InitStructure.GPIO_Pin = GPIO_Pin_13; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IPU;? //上拉输入 GPIO_Init(GPIOC, &GPIO_InitStructure); ; g* C. t/ S4 e1 L9 k! R8 q/* PB5->KEY_DOWN*/ GPIO_InitStructure.GPIO_Pin = GPIO_Pin_5; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IPU;? //上拉输入 GPIO_Init(GPIOB, &GPIO_InitStructure); 4 ]- X. O* U) ?9 H/* GPIOA Configuration:TIM2 Channel1, 2, 3 and 4 in Output */ GPIO_InitStructure.GPIO_Pin = GPIO_Pin_0 | GPIO_Pin_1 | GPIO_Pin_2 | GPIO_Pin_3; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP; GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz; . S/ r% M: v1 U6 d- P7 Z$ ^GPIO_Init(GPIOA, &GPIO_InitStructure); } 4 J: O, O, \* s3 ?void NVIC_Configuration(void) { NVIC_InitTypeDef NVIC_InitStructure; /* Configure one bit for preemption priority */ NVIC_PriorityGroupConfig(NVIC_PriorityGroup_1); NVIC_InitStructure.NVIC_IRQChannel=TIM2_IRQn; NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority=0; NVIC_InitStructure.NVIC_IRQChannelSubPriority=1; NVIC_InitStructure.NVIC_IRQChannelCmd=ENABLE; NVIC_Init(&NVIC_InitStructure); } , X2 L# Y6 C' s! A4 a* ]) A3 C1 Cu16 capture = 0; extern vu16 CCR1_Val; extern vu16 CCR2_Val; extern vu16 CCR3_Val; extern vu16 CCR4_Val; void TIM2_IRQHandler(void) { /* TIM2_CH1 toggling with frequency = 183.1 Hz */ if (TIM_GetITStatus(TIM2, TIM_IT_CC1) != RESET) { TIM_ClearITPendingBit(TIM2, TIM_IT_CC1 ); capture = TIM_GetCapture1(TIM2); TIM_SetCompare1(TIM2, capture + CCR1_Val ); } /* TIM2_CH2 toggling with frequency = 366.2 Hz */ if (TIM_GetITStatus(TIM2, TIM_IT_CC2) != RESET) { TIM_ClearITPendingBit(TIM2, TIM_IT_CC2); capture = TIM_GetCapture2(TIM2); TIM_SetCompare2(TIM2, capture + CCR2_Val); } /* TIM2_CH3 toggling with frequency = 732.4 Hz */ if (TIM_GetITStatus(TIM2, TIM_IT_CC3) != RESET) { TIM_ClearITPendingBit(TIM2, TIM_IT_CC3); capture = TIM_GetCapture3(TIM2); TIM_SetCompare3(TIM2, capture + CCR3_Val); } $ T8 f l" [; J* H/* TIM2_CH4 toggling with frequency = 1464.8 Hz */ if (TIM_GetITStatus(TIM2, TIM_IT_CC4) != RESET) { TIM_ClearITPendingBit(TIM2, TIM_IT_CC4); capture = TIM_GetCapture4(TIM2); TIM_SetCompare4(TIM2, capture + CCR4_Val); } # Z( O/ i0 }) R" H! ^- ]3 H) j} 一个定时器一个通道,产生不同频率 / D8 e2 O8 R2 \" y# {其它的设置都一样,就是在主函数中修改一个参数,然后在定时器中断中,根据这个参数,改变频率。 0 n; K1 l8 _- U( W- ~# I$ o#include "stm32lib\\stm32f10x.h" #include "hal.h" volatile u16 Key_Value=1000;? //用于保存按键相应的PWM波占空比值 8 X: I$ w$ T0 {8 C0 Z5 f9 ?4 O8 Q: o8 n) G+ R% V int main(void) { ChipHalInit(); ChipOutHalInit(); while(1) {? ? if( (!Get_Key_Up)&(!Get_Key_Down)&(!Get_Key_Left)&(!Get_Key_Right)&(!Get_Key_Ctrl) ) ? { ? ? Key_Value=12000; ? } ? else ? { ? ? if(Get_Key_Up)? ? //按键前进按下 ,对应1kHz ? ? { ? ? Key_Value=6000; ? ? } ? ? else if(Get_Key_Down)? //按键后退按下 ,对应2kHz ? ? { ? ? ? Key_Value=3000; ? ? } ? ? Delay_Ms(20);? ? ? //10ms延时 ? ? if(Get_Key_Left)? ? //按键左转按下,对应3kHz ? ? { ? ? Key_Value=2000; ? ? } ? ? else if(Get_Key_Right) //按键右转按下,对应4kHz ? ? { ? ? ? Key_Value=1500; ? ? }? ? ? Delay_Ms(20);? ? ? //10ms延时 ? ? if(Get_Key_Ctrl)? ? //按键控制按下,对应5kHz ? ? { ? ? ? Key_Value=1200; ? ? } ? ? Delay_Ms(20);? ? ? //10ms延时 ? } } } ) J9 U2 c, |; x2 d- S7 l Mextern volatile u16 Key_Value; u16 capture=0; void TIM3_IRQHandler(void) { /* TIM2_CH2 toggling with frequency = 366.2 Hz */ if (TIM_GetITStatus(TIM3, TIM_IT_CC2) != RESET) { ? ? TIM_ClearITPendingBit(TIM3, TIM_IT_CC2); capture = TIM_GetCapture2(TIM3); ? ? TIM_SetCompare2(TIM3, capture + Key_Value); } } 9 I- v" ?$ ^' l; dvoid TIM3_Configuration(void) { TIM_TimeBaseInitTypeDef TIM_TimeBaseStructure; TIM_OCInitTypeDef TIM_OCInitStructure; ! U, e8 z. m: K* {7 f- [! D. R7 D5 l/* TIM2 clock enable */ RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM3, ENABLE); /*TIM1时钟配置*/ TIM_TimeBaseStructure.TIM_Prescaler = 5;? ? ? //预分频(时钟分频)72M/6=12M TIM_TimeBaseStructure.TIM_CounterMode = TIM_CounterMode_Up;? //向上计数 TIM_TimeBaseStructure.TIM_Period = 65535;? ? ? ? //装载值选择最大 TIM_TimeBaseStructure.TIM_ClockDivision = TIM_CKD_DIV1; TIM_TimeBaseStructure.TIM_RepetitionCounter = 0x0; TIM_TimeBaseInit(TIM3,&TIM_TimeBaseStructure); /* Channel 1 Configuration in PWM mode */ TIM_OCInitStructure.TIM_OCMode = TIM_OCMode_Toggle; //PWM模式2 TIM_OCInitStructure.TIM_OutputState = TIM_OutputState_Enable; //正向通道有效 TIM_OCInitStructure.TIM_OutputNState = TIM_OutputNState_Disable;//反向通道无效 TIM_OCInitStructure.TIM_Pulse = Key_Value; //占空时间 TIM_OCInitStructure.TIM_OCPolarity = TIM_OCPolarity_Low; //输出极性 TIM_OCInitStructure.TIM_OCNPolarity = TIM_OCNPolarity_High; //互补端的极性 TIM_OCInitStructure.TIM_OCIdleState = TIM_OCIdleState_Set; TIM_OCInitStructure.TIM_OCNIdleState = TIM_OCIdleState_Reset; TIM_OC2Init(TIM3,&TIM_OCInitStructure); //通道2 TIM_OC2PreloadConfig(TIM3, TIM_OCPreload_Disable); /* TIM1 counter enable */ TIM_Cmd(TIM3,ENABLE); /* TIM1 Main Output Enable */ //TIM_CtrlPWMOutputs(TIM1,ENABLE); TIM_ITConfig(TIM3, TIM_IT_CC2 , ENABLE); } 注意:在计算PWM频率的时候,TIMx的时钟都是72Mhz,分频后,因为翻转两次才能形成一个PWM波,因为,PWM的频率是捕获改变频率的1/2。 9 [: ?: }$ Y* H4 J1 _! z* H |