
1.实验原理 DSI(Display Serial Interface),是有MIPI联盟定义的一组通信协议的一部分,MIPI DSI主机控制器是一个数字核心,实现MIPI DSI规范中定义的所有协议功能。它提供了系统和MIPI D_PHY中间的接口,允许用户和符合DSI的显示器进行通信。STM32MP157A系列芯片集成MIPI DSI主机控制器。 MIPI®DSI主机包括内部连接到LTDC的专用视频接口以及一个通用的APB接口,可用于向显示器传输信息。 ![]() FS-MP1A提供两组LCD显示接口,分别是RGB和MIPI接口,本节介绍如何在Linux中完成MIPI LCD的支持。 ![]() 上图为MIPI LCD的接口,接口信号线分为两组,分别是由DSI_D0P、DSI_D0N、DSI_D1P、DSI_D1N、DSI_CKP、DSI_CKN、DSI_TE、DSI_RST、LCD_PWM组成的LCD接口和由I2C2_SCL、I2C2_SDA、TP_RST、TP_IRQ组成的触摸屏接口,本节介绍LCD的支持。 DSI_D0P、DSI_D0N、DSI_D1P、DSI_D1N、DSI_CKP、DSI_CKN是DSI-MIPI的信号线,DSI_TE未使用,DSI_RST是LCD屏复位信号LCD_PWM是背光控制信号。 MIPI LCD接口管脚对应关系: ![]() ![]() ![]() ![]() ![]() 1.PWM设备节点 内核中ST对STM32MP15x系列芯片的设备树资源了做了定义,可参见: arch/arm/boot/dts/stm32mp151.dtsi stm32mp151中timers2定义如下: timers2: timer@40000000 { #address-cells = <1>; #size-cells = <0>; compatible = "st,stm32-timers"; reg = <0x40000000 0x400>; clocks = <&rcc TIM2_K>; clock-names = "int"; dmas = <&dmamux1 18 0x400 0x80000001>, <&dmamux1 19 0x400 0x80000001>, <&dmamux1 20 0x400 0x80000001>, <&dmamux1 21 0x400 0x80000001>, <&dmamux1 22 0x400 0x80000001>; dma-names = "ch1", "ch2", "ch3", "ch4", "up"; status = "disabled"; pwm { compatible = "st,stm32-pwm"; #pwm-cells = <3>; status = "disabled"; }; timer@1 { compatible = "st,stm32h7-timer-trigger"; reg = <1>; status = "disabled"; }; counter { compatible = "st,stm32-timer-counter"; status = "disabled"; }; }; 上述代码只对timers5做了基本的初始化,并没有针对不同的硬件设计做适配,所以需结合硬件补全设备树节点信息。 参考文档或stm32mp15xx-dkx.dtsi对于i2c设备节点的描述,增加timers内容如下: &timers2 { /* spare dmas for other usage */ /delete-property/dmas; /delete-property/dma-names; status = "okay"; pwm2: pwm { pinctrl-0 = <&pwm2_pins_b>; pinctrl-1 = <&pwm2_sleep_pins_b>; pinctrl-names = "default", "sleep"; #pwm-cells = <2>; status = "okay"; }; timer@2 { status = "disabled"; }; }; stm32mp15-pinctrl.dtsi对于pwm2的描述与FS-MP1A所使用管脚不一致,所以无法直接使用,需参考其增加如下内容: pwm2_pins_b: pwm2-0 { pins { pinmux = <STM32_PINMUX('A', 5, AF1)>; /* TIM2_CH1 */ bias-pull-down; drive-push-pull; slew-rate = <0>; }; }; pwm2_sleep_pins_b: pwm1-sleep-0 { pins { pinmux = <STM32_PINMUX('A', 5, ANALOG)>; /* TIM2_CH1 */ }; }; 2.背光设备节点 FS-MP1A背光可以通过GPIO驱动也可通过PWM2的通道1驱动,可以对比参考文档或内核中其他设备树关于背光的定义。 GPIO驱动背光节点内容如下: panel_backlight: panel-backlight { compatible = "gpio-backlight"; gpios = <&gpiod 13 GPIO_ACTIVE_LOW>; default-on; status = "okay"; }; PWM驱动背光节点内容如下: panel_backlight: panel-backlight { compatible = "pwm-backlight"; pwms = <&pwm2 0 5000000>; brightness-levels = <0 4 8 16 32 64 128 255>; default-brightness-level = <6>; status = "okay"; }; 3.LTDC设备节点 由于前面章节已经对LTDC做了讲解,并且已经增加了LTDC的设备节点,本节只需在原有基础上增加DSI对应的数据通道即可。 <dc { status = "okay"; port { #address-cells = <1>; #size-cells = <0>; ltdc_ep1_out: endpoint@1 { reg = <1>; remote-endpoint = <&dsi_in>; }; }; }; 4.Panel设备树节点 结合参考文档及内核中STM32MP157其他设备树文件,Panel设备树节点为: panel: panel@0 { compatible = "sitronix,st7701"; reg = <0>; reset-gpios = <&gpiog 9 GPIO_ACTIVE_HIGH>; power-supply = <&v3v3>; status = "okay"; port { panel_in: endpoint { remote-endpoint = <&dsi_out>; }; }; }; 5.DSI设备树节点 内核中ST对STM32MP15x系列芯片的设备树资源了做了定义,可参见: arch/arm/boot/dts/stm32mp157.dtsi stm32mp157中dsi定义如下: dsi: dsi@5a000000 { compatible = "st,stm32-dsi"; reg = <0x5a000000 0x800>; phy-dsi-supply = <®18>; clocks = <&rcc DSI_K>, <&scmi0_clk CK_SCMI0_HSE>, <&rcc DSI_PX>; clock-names = "pclk", "ref", "px_clk"; resets = <&rcc DSI_R>; reset-names = "apb"; status = "disabled"; }; 上述代码只对dsi做了基本的初始化,并没有针对不同的硬件设计做适配,所以需结合硬件补全设备树节点信息。补齐后内容如下: &dsi { #address-cells = <1>; #size-cells = <0>; status = "okay"; ports { #address-cells = <1>; #size-cells = <0>; port@0 { reg = <0>; dsi_in: endpoint { remote-endpoint = <<dc_ep1_out>; }; }; port@1 { reg = <1>; dsi_out: endpoint { remote-endpoint = <&dsi_panel_in>; }; }; }; panel_dsi: panel-dsi@0 { compatible = "sitronix,st7701"; reg = <0>; reset-gpios = <&gpiog 9 GPIO_ACTIVE_LOW>; backlight = <&panel_backlight>; power-supply = <&v3v3>; status = "okay"; port { dsi_panel_in: endpoint { remote-endpoint = <&dsi_out>; }; }; }; }; 2.实验目的 熟悉基于Linux操作系统下的MIPI-LCD设备驱动移植配置过程。 3.实验平台 华清远见开发环境,FS-MP1A平台; 4.实验步骤 1.导入交叉编译工具链 linux@ubuntu ![]() 2.添加MIPI-LCD驱动 FS-MP1A配套MIPI屏幕主控芯片是st7701,内核中并没有提供其的驱动,所以需要移植st7701的驱动 将下的panel-sitronix-st7701.c复制到内核源码下的drivers/gpu/drm/panel/目录下。 linux@ubuntu $> cp panel-sitronix-st7701.c drivers/gpu/drm/panel/ 3.添加pwm2内容 修改stm32mp15xx-fsmp1x.dtsi,在stm32mp15xx-fsmp1x.dtsi文件末尾添加如下内容: &timers2 { /* spare dmas for other usage */ /delete-property/dmas; /delete-property/dma-names; status = "okay"; pwm2: pwm { pinctrl-0 = <&pwm2_pins_b>; pinctrl-1 = <&pwm2_sleep_pins_b>; pinctrl-names = "default", "sleep"; #pwm-cells = <2>; status = "okay"; }; timer@2 { status = "disabled"; }; }; &pinctrl { pwm2_pins_b: pwm2-0 { pins { pinmux = <STM32_PINMUX('A', 5, AF1)>; /* TIM2_CH1 */ bias-pull-down; drive-push-pull; slew-rate = <0>; }; }; pwm2_sleep_pins_b: pwm1-sleep-0 { pins { pinmux = <STM32_PINMUX('A', 5, ANALOG)>; /* TIM2_CH1 */ }; }; }; 4.添加背光内容 修改stm32mp15xx-fsmp1x.dtsi,在根节点中添加如下内容: panel_backlight: panel-backlight { compatible = "pwm-backlight"; pwms = <&pwm2 0 5000000>; brightness-levels = <0 4 8 16 32 64 128 255>; default-brightness-level = <6>; status = "okay"; }; 5.增加设备树文件 由于MIPI LCD并非FS-MP1A必须配置,本节增加一个设备树文件,对应增加了屏幕的设备。 在内核的arch/arm/boot/dts目录下新建文件stm32mp157a-fsmp1a-mipi050.dts文件并添加如下内容: #include "stm32mp157a-fsmp1a.dts" / { model = "HQYJ STM32MP157 FSMP1A MIPI Discovery Board"; compatible = "st,stm32mp157a-dk1", "st,stm32mp157"; }; 由于增加了新的设备树文件需修改arch/arm/boot/dts/Makefile,在文件中增加新的条目,红色字体部分为增加内容 dtb-$(CONFIG_ARCH_STM32) += \ ….. stm32mp157a-dk1.dtb \ stm32mp157a-fsmp1a.dtb \ stm32mp157a-fsmp1a-mipi050.dtb \ stm32mp157d-dk1.dtb \ 6.添加ltdc内容 修改stm32mp157a-fsmp1a-mipi050.dts,在文件末尾添加如下内容: <dc { status = "okay"; port { #address-cells = <1>; #size-cells = <0>; ltdc_ep1_out: endpoint@1 { reg = <1>; remote-endpoint = <&dsi_in>; }; }; }; 7.添加dts内容 修改stm32mp157a-fsmp1a-mipi050.dts,在文件末尾添加如下内容: &dsi { #address-cells = <1>; #size-cells = <0>; status = "okay"; ports { #address-cells = <1>; #size-cells = <0>; port@0 { reg = <0>; dsi_in: endpoint { remote-endpoint = <<dc_ep1_out>; }; }; port@1 { reg = <1>; dsi_out: endpoint { remote-endpoint = <&dsi_panel_in>; }; }; }; panel_dsi: panel-dsi@0 { compatible = "sitronix,st7701"; reg = <0>; reset-gpios = <&gpiog 9 GPIO_ACTIVE_HIGH>; power-supply = <&v3v3>; status = "okay"; port { dsi_panel_in: endpoint { remote-endpoint = <&dsi_out>; }; }; }; }; 8.配置内核 配置内核支持st7701,并列出主要选项,如下: linux@ubuntu ![]() Device Drivers ---> Graphics support ---> <*> Direct Rendering Manager (XFree86 4.1.0 and higher DRI support) ---> <*> DRM Support for STMicroelectronics SoC Series <*> STMicroelectronics specific extensions for Synopsys MIPI DSI Display Panels ---> <*> Sitronix ST7701 panel driver Backlight & LCD device support ---> <*> Generic PWM based Backlight Driver <*> Generic GPIO based Backlight Driver 9.增加启动项 在虚拟机/tftpboot /tftpboot/pxelinux.cfg/01-00-80-e1-42-60-17末尾添加 LABEL stm32mp157a-fsmp1a-mipi KERNEL /uImage FDT /stm32mp157a-fsmp1a-mipi050.dtb APPEND root=/dev/mmcblk1p4 rootwait rw console=ttySTM0,115200 10.编译内核及设备树 linux@ubuntu ![]() 重启测试 将编译好的设备树和内核镜像拷贝到/tftpboot目录下,通过tftp引导内核,设备连接HDMI显示器,重启设备后查看/sys/class/drm会多出HMID的信息,同时显示器会有显示。 ———————————————— 版权声明:华清远见IT开放实验室 |
基于STM32MP1和STM32MP2在嵌入式Linux平台上部署有效的安全保护机制
利用STM32MP1和STM32MP2为嵌入式Linux提供有效的安全措施:供当今决策者参考的3条宝贵经验
STM32MP1 WiFi连接
【STM32MP157】从ST官方例程中分析RPMsg-TTY/SDB核间通信的使用方法
【STM32MPU 安全启动】 TF-A BL2 TrustedBoot原理学习
《STM32MPU安全启动》学**结
《STM32MPU安全启动》学习笔记之optee 如何加载CORTEX-M核和使能校验
《STM32MPU安全启动》学习笔记之TF-A BL2校验optee和uboot的流程以及如何使能
《STM32MPU 安全启动》课程学习心得+开启一扇通往嵌入式系统安全领域深处的大门。
《STM32MPU安全启动》 课程学习心得