你的浏览器版本过低,可能导致网站不能正常访问!
为了你能正常使用网站功能,请使用这些浏览器。

【学习指南】基于STM32G474VET6 开发板实验经验分享(二)

[复制链接]
攻城狮Melo 发布时间:2024-11-22 15:27
六、SPI 实验
实验目的:掌握和熟悉 SPI 软件模拟和硬件控制的使用和配置方法。

1、软件模拟 SPI 驱动 TFT 实验
CubeMX 配置如下,保存后生成对应的配置代码:
13.png

▲ CubeMX 配置

本实验使用软件模拟 SPI,只需要对相应 IO 进行配置即可,注意需要配置 IO 速度等级,CLK 信号和 SDA 信号频率较高,需要配置为 very high。

相关操作函数说明:
void Lcd_Reset(void)

功能:液晶硬复位函数;
参数:无;
返回:无;
说明:液晶初始化前需执行一次复位操作
void LCD_Initial(void)
功能:初始化液晶;
参数:无;
返回:无;
说明:在对液晶写入内容前需要进行初始化配置;
void Lcd_ColorBox(unsigned int xStart,unsigned int yStart,unsigned int xLong,unsigned int yLong,unsigned int Color)

功能:Lcd 矩形填充函数;
参数 1:x 方向的起始点;
参数 2:y 方向的起始点;
参数 3:x 方向的长度;
参数 4:y 方向的长度;
参数 5:填充的颜色;
返回:无;
说明:将指定区域内填充指定颜色,常用于清屏
void BlockWrite(unsigned int Xstart,unsigned int Xend,unsigned int Ystart,unsigned int Yend)

功能:在一个指定位置开一个矩形框;
参数 1:x 方向的起始点;
参数 2:x 方向的终点;
参数 3:y 方向的起始点;
参数 4:y 方向的终点;
返回:无;
说明:开一个矩形框,方便接下来往这个框填充数据;
void DrawPixel(unsigned int x, unsigned int y, int Color)
功能:在 x,y 坐标上打一个颜色为 Color 的点;
参数 1:x 坐标;
参数 2:y 坐标;
参数 3:点的颜色;
返回:无;
void LCD_PutString(unsigned short x, unsigned short y, char *s, unsigned int fColor, unsigned int bColor,unsigned char flag)

功能:显示一个字符串;
参数 1:起始点 x 坐标;
参数 2:起始点 y 坐标;
参数 3:字符串指针;
参数 4:前景色;
参数 5:背景色;
参数 6:有无背景色;
返回:无


核心代码:
LCD_Initial();
Lcd_ColorBox(0,0,XSIZE_PHYS,YSIZE_PHYS,Blue);//用蓝色清屏
Lcd_ColorBox(0,0,XSIZE_PHYS,YSIZE_PHYS,Red);//用红色清屏
Lcd_ColorBox(0,0,XSIZE_PHYS,YSIZE_PHYS,Green);//用绿色清屏
Lcd_ColorBox(0,0,XSIZE_PHYS,YSIZE_PHYS,White);//用白色清屏
LCD_PutString(10,10,"STM32G474Test",Red,White,0);//显示字符

在 main 函数中进行过外设初始化之后,对 LCD 进行初始化,然后分别用四种颜色清屏,最后显示测试字符。


实验现象:
下载烧录后可以观察到屏幕分别刷新蓝红绿白四种颜色,最后显示测试字符STM32G474Test。


2、硬件 SPI 驱动 TFT 实验
CubeMX 配置如下,保存后生成对应的配置代码:

12.png

▲ CubeMX 进行 SPI 配置
微信图片_20241122152531.png

▲ CubeMX 进行 IO 速度配置
本实验使用硬件 SPI,需要配置 SPI 的时钟分频,配置出合适的时钟速率,另外需要注意设置时钟信号的空闲电平以及采样边沿,还需要将高速的信号 IO 速度进行配置,其他 IO配置与软件模拟 SPI 相同。




相关操作函数说明:

HAL_StatusTypeDef HAL_SPI_Transmit(SPI_HandleTypeDef *hspi, uint8_t *pData, uint16_t Size, uint32_t Timeout)

功能:通过硬件 SPI 发送一组数据;

参数 1:SPI 句柄,根据实际需要填写;

参数 2:要发送数据的指针,常见为发送数据数组的首地址;

参数 3:发送数据长度,单位字节;

参数 4:发送超时时间,单位 ms;

返回:操作结果,HAL_OK,HAL_ERROR;

示例:HAL_SPI_Transmit ( &hspi4,data_color,2*xLong,10 );//通过 SPI4 发送颜色数据

HAL_StatusTypeDef HAL_SPI_Receive(SPI_HandleTypeDef *hspi, uint8_t *pData, uint16_t Size, uint32_t Timeout)

功能:通过硬件 SPI 接收一组数据;

参数 1:SPI 句柄,根据实际需要填写;

参数 2:要接收数据保存指针;

参数 3:接收数据长度,单位字节;

参数 4:接收超时时间,单位 ms;

返回:操作结果,HAL_OK,HAL_ERROR;

HAL_StatusTypeDef HAL_SPI_TransmitReceive(SPI_HandleTypeDef *hspi, uint8_t *pTxData, uint8_t *pRxData, uint16_t Size, uint32_t Timeout)

功能:通过硬件 SPI 交换一组数据;

参数 1:SPI 句柄,根据实际需要填写;

参数 2:要发送数据的指针,常见为发送数据数组的首地址;

参数 3:要接收数据的指针,接收数据数组的首地址;

参数 4:数据长度,单位字节;

参数 5:超时时间,单位 ms;

返回:操作结果,HAL_OK,HAL_ERROR;



核心代码:

LCD_Initial();

Lcd_ColorBox(0,0,XSIZE_PHYS,YSIZE_PHYS,Blue);//用蓝色清屏

Lcd_ColorBox(0,0,XSIZE_PHYS,YSIZE_PHYS,Red);//用红色清屏

Lcd_ColorBox(0,0,XSIZE_PHYS,YSIZE_PHYS,Green);//用绿色清屏

Lcd_ColorBox(0,0,XSIZE_PHYS,YSIZE_PHYS,White);//用白色清屏

LCD_PutString(10,10,"STM32G474Test",Red,White,0);//显示字符



在 main 函数中进行过外设初始化之后,对 LCD 进行初始化,然后分别用四种颜色清屏,最后显示测试字符。



实验现象:

下载烧录后可以观察到屏幕分别刷新蓝红绿白四种颜色,最后显示测试字符STM32G474Test。



3、硬件 SPI 驱动 TFT 实验(DMA)

CubeMX 配置如下,保存后生成对应的配置代码:
微信图片_20241122152534.png

▲ CubeMX 进行 SPI 的 DMA 配置
本实验使用硬件 SPI,使用 DMA 进行发送。

相关操作函数说明:
HAL_StatusTypeDef HAL_SPI_Transmit_DMA(SPI_HandleTypeDef *hspi, uint8_t *pData,uint16_t Size)
功能:通过硬件 SPI 使用 DMA 方式发送一组数据;
参数 1:SPI 句柄,根据实际需要填写;
参数 2:要发送数据的指针,常见为发送数据数组的首地址;
参数 3:发送数据长度,单位字节;
返回:操作结果,HAL_OK,HAL_ERROR;
示例:HAL_SPI_Transmit_DMA ( &hspi4,data_color,2*xLong );//通过 SPI4 的 DMA 方式发送颜色数据
HAL_StatusTypeDef HAL_SPI_Receive_DMA(SPI_HandleTypeDef *hspi, uint8_t *pData,uint16_t Size)

功能:通过硬件 SPI 的 DMA 方式接收一组数据;
参数 1:SPI 句柄,根据实际需要填写;
参数 2:要接收数据保存指针;
参数 3:接收数据长度,单位字节;
返回:操作结果,HAL_OK,HAL_ERROR;
HAL_StatusTypeDef HAL_SPI_TransmitReceive_DMA(SPI_HandleTypeDef *hspi, uint8_t*pTxData, uint8_t *pRxData, uint16_t Size)

功能:通过硬件 SPI 的 DMA 方式交换一组数据;
参数 1:SPI 句柄,根据实际需要填写;
参数 2:要发送数据的指针,常见为发送数据数组的首地址;
参数 3:要接收数据的指针,接收数据数组的首地址;
参数 4:数据长度,单位字节;
返回:操作结果,HAL_OK,HAL_ERROR;
注意:使用相应 DMA 时需要对该 DMA 请求进行配置;

核心代码:
//发送函数修改
if((temp+1) % xLong == 0)
{
HAL_SPI_Transmit_DMA(&hspi4,data_color,2*xLong);
while(!dma_flag_temp);
dma_flag_temp = 0;
}

使用 DMA 方式进行发送时需要确保上一次 DMA 发送已经完成,要避免重复请求。

void DMA1_Channel1_IRQHandler(void)
{
if(__HAL_DMA_GET_FLAG(&hdma_spi4_tx,DMA_FLAG_TC1))
{
dma_flag_temp=1;
__HAL_DMA_CLEAR_FLAG(&hdma_spi4_tx,DMA_FLAG_TC1);
HAL_SPI_DMAStop(&hspi4);
}
HAL_DMA_IRQHandler(&hdma_spi4_tx);
}

在 DMA 中断中判断是否发生了 DMA 传输完成事件,如果 DMA 传输完成则将相应标志位置位,并清除标志。

LCD_Initial();Lcd_ColorBox(0,0,XSIZE_PHYS,YSIZE_PHYS,Blue);//用蓝色清屏
Lcd_ColorBox(0,0,XSIZE_PHYS,YSIZE_PHYS,Red);//用红色清屏
Lcd_ColorBox(0,0,XSIZE_PHYS,YSIZE_PHYS,Green);//用绿色清屏
Lcd_ColorBox(0,0,XSIZE_PHYS,YSIZE_PHYS,White);//用白色清屏
LCD_PutString(10,10,"STM32G474Test",Red,White,0);//显示字符

在 main 函数中进行过外设初始化之后,对 LCD 进行初始化,然后分别用四种颜色清屏,最后显示测试字符。

实验现象:
下载烧录后可以观察到屏幕分别刷新蓝红绿白四种颜色,最后显示测试字符STM32G474Test。


七、IIC实验

实验目的:掌握和熟悉 IIC 软件模拟和硬件控制的使用和配置方法。

1、软件模拟 IIC 驱动 24C02 实验
CubeMX 配置如下,保存后生成对应的配置代码:

4.png

▲ CubeMX 进行软件 IIC 的 IO 配置

本实验使用软件 IIC 模拟,只需要配置 IO,初始 IO 配置都配置为输出 IO 即可,24C02 外围电路有上拉电阻,不需要配置内部上拉。

相关操作函数说明:
void SDA_Input_Mode()
功能:将 SDA 切换到输入模式;
参数:无;
返回:无;
说明:SDA 是双向的,在进行数据读取时需要切换到输入模式

void SDA_Output_Mode()
功能:将 SDA 切换到输出模式;
参数:无;
返回:无;
说明:SDA 是双向的,在进行数据发送时需要切换到输出模式

void I2CStart(void)
功能:模拟 IIC 的起始信号;
参数:无;
返回:无;

void I2CStop(void)
功能:模拟 IIC 的停止信号;
参数:无;
返回:无;

unsigned char I2CWaitAck(void)
功能:模拟 IIC 等待应答;
参数:无;
返回:应答结果,ERROR 或 SUCCESS;

void I2CSendAck(void)
功能:模拟 IIC 的应答信号;
参数:无;
返回:无;

void I2CSendNotAck(void)
功能:模拟 IIC 的非应答信号;
数:无;
返回:无;

void I2CSendByte(unsigned char cSendByte)
功能:通过模拟 IIC 发送一个字节;
参数:需要发送的字节;
返回:无;

unsigned char I2CReceiveByte(void)
功能:通过模拟 IIC 接收一个字节;
参数:无;
返回:接收到的字节;

核心代码:
//24C02 读取一个字节
uint8_t x24c02_read(uint8_t address)
{
unsigned char val;
I2CStart();//起始信号
I2CSendByte(0xa0);//发送器件写地址
I2CWaitAck();//等待应答
I2CSendByte(address);//发送读取的内存地址
I2CWaitAck();//等待应答
I2CStart();//起始信号
I2CSendByte(0xa1);//发送器件读地址
I2CWaitAck();//等待应答
val = I2CReceiveByte();//接收一个字节
I2CWaitAck();//等待应答
I2CStop();//停止信号
return(val);
}
//24C02 读取写入一个字节
void x24c02_write(uint8_t address, uint8_t info)
{
I2CStart();//起始信号
I2CSendByte(0xa0);//发送器件写地址
I2CWaitAck();//等待应答
I2CSendByte(address);//发送写入的内存地址
I2CWaitAck();//等待应答
I2CSendByte(info);//发送写入内容
I2CWaitAck();//等待应答
I2CStop();//停止信号
}

上述两个函数为 24C02 的读写函数,写器件地址为 0xA0,读器件地址为 0xA1,地址由外部电路连接决定。

I2CInit();
uint32_t i;

printf(" 24C02 Test ....\r\n\r\n");
//向 0x00 内存地址写入数据
for(i = 0; i < 6; i++)
{
x24c02_write(i,Data_T);
}
printf(" 24C02 Write ok\r\n");
HAL_Delay(100);

//从 0x00 内存地址读出数据
for(i = 0; i < DataSize; i++)
Data_R=x24c02_read(i);
printf(" 24C02 Read ok\r\n");

printf("24C02 Read Data : \r\n");
for(i = 0; i < DataSize; i++)
printf("0x%02X ", Data_R);
printf("\r\n\r\n");
if(memcmp(Data_T, Data_R, DataSize) == 0)
{
printf(" 24C02 Test OK\r\n");
}
else
{
printf(" 24C02 Test Failed\r\n");
}

以上为 main 函数中外设初始化结束后的部分,通过软件模拟 IIC 向 24C02 内存地址写入一段设定好的数据,然后将这段数据读出,最后进行对比。

实验现象:
下载烧录后可以观察到上位机串口助手打印测试数据。

微信图片_20241122152540.png

▲ 实验现象


2、硬件 IIC 驱动 24C02 实验

CubeMX 配置如下,保存后生成对应的配置代码:

微信图片_20241122152543.png

▲ CubeMX 进行 IIC 配置

本实验使用硬件 IIC,启用之后 IIC 的配置不需要改变。

相关操作函数说明:
HAL_StatusTypeDef HAL_I2C_Mem_Write(I2C_HandleTypeDef *hi2c, uint16_t DevAddress,uint16_t MemAddress,uint16_t MemAddSize, uint8_t *pData, uint16_t Size, uint32_t Timeout)
功能:以阻塞方式将一定量的数据写入指定的内存地址;
参数 1:I2C 句柄,根据实际需要填写;
参数 2:设备地址,注意这里填入的地址应该是左移一位之后的地址;
参数 3:目标内存的地址;
参数 4:目标内存的地址大小,可选 8 位(I2C_MEMADD_SIZE_8BIT),16 位(I2C_MEMADD_SIZE_16BIT);
参数 5:带发送数据的指针;
参数 6:待发送的数据量;
参数 7:发送超时时间;
返回:操作结果,HAL_OK,HAL_ERROR;

示例:
HAL_I2C_Mem_Write(&hi2c3,Addr_W,0x01,I2C_MEMADD_SIZE_8BIT,Data_T,DataSize,0xFF);//通过 IIC 向目标器件的 0x01 地址写入待发送数据;

HAL_StatusTypeDef HAL_I2C_Mem_Read(I2C_HandleTypeDef *hi2c, uint16_t DevAddress,uint16_t MemAddress,uint16_t MemAddSize, uint8_t *pData, uint16_t Size, uint32_t Timeout)
功能:通过硬件 IIC 从一个特定的内存地址以阻塞模式读取一定量的数据;
参数 1:I2C 句柄,根据实际需要填写;
参数 2:设备地址,注意这里填入的地址应该是左移一位之后的地址;
参数 3:目标内存的地址;
参数 4:目标内存的地址大小,可选 8 位(I2C_MEMADD_SIZE_8BIT),16 位(I2C_MEMADD_SIZE_16BIT);
参数 5:带接收数据保存地址的指针;
参数 6:待接收的数据量;
参数 7:接收超时时间;
返回:操作结果,HAL_OK,HAL_ERROR,HAL_BUSY;
示例:
HAL_I2C_Mem_Read(&hi2c3,Addr_R,0x01,I2C_MEMADD_SIZE_8BIT,Data_R,DataSize,0xFF);//通过 IIC 从目标器件的 0x01 地址读取数据;


核心代码:
uint32_t i;
printf(" 24C02 Test ....\r\n\r\n");
//向 0x01 内存地址写入数据
HAL_I2C_Mem_Write(&hi2c3,Addr_W,0x01,I2C_MEMADD_SIZE_8BIT,Data_T,DataSize,0xFF);
printf(" 24C02 Write ok\r\n");
HAL_Delay(100);
//从 0x01 内存地址读出数据
HAL_I2C_Mem_Read(&hi2c3,Addr_R,0x01,I2C_MEMADD_SIZE_8BIT,Data_R,DataSize,0xFF);
printf(" 24C02 Read ok\r\n");
printf("24C02 Read Data : \r\n");
for(i = 0; i < DataSize; i++)
printf("0x%02X ", Data_R);
printf("\r\n\r\n");
if(memcmp(Data_T, Data_R, DataSize) == 0)
{
printf(" 24C02 Test OK\r\n");
}
else
{
printf(" 24C02 Test Failed\r\n");
}

以上为 main 函数中外设初始化结束后的部分,通过硬件 IIC 向 24C02 内存地址写入一段设定好的数据,然后将这段数据读出,最后进行对比。

实验现象:
下载烧录后可以观察到上位机串口助手打印测试数据。

微信图片_20241122152546.png
▲ 实验现象


七、ADC实验

实验目的:掌握和熟悉 ADC 单路采集和多路采集的使用和配置方法,包含查询,中断,DMA等方式。

1、ADC 查询方式单路采集实验

CubeMX 配置如下,保存后生成对应的配置代码:

微信图片_20241122152549.png
▲ CubeMX 进行 ADC 配置

本实验进行单通道 ADC 软件触发采样,只需要对 ADC 进行简单配置即可,同时使用串口进行数据输出,串口与时钟系统配置上文已经展示,参照上文实验进行配置。

相关操作函数说明:
HAL_StatusTypeDef HAL_ADCEx_Calibration_Start(ADC_HandleTypeDef *hadc, uint32_t SingleDiff)
功能:对 ADC 进行校准;
参数 1:ADC 句柄,根据实际需要填写;
参数 2:ADC 采样模式,可选 ADC_DIFFERENTIAL_ENDED(差分采样模式)或ADC_SINGLE_ENDED(单端采样模式);
返回:操作结果,HAL_OK,HAL_ERROR;
示例:HAL_ADCEx_Calibration_Start(&hadc1,ADC_SINGLE_ENDED); //对 ADC1 进行单端采样模式下的校准;

HAL_StatusTypeDef HAL_ADC_Start(ADC_HandleTypeDef *hadc)
功能:使能 ADC,开启 ADC 规则组转换;
参数 1:ADC 句柄,根据实际需要填写;
返回:操作结果,HAL_OK,HAL_ERROR,HAL_BUSY;
示例:HAL_ADC_Start(&hadc1); //开启 ADC1 转换
注意:如果不是工作在连续模式,运行一次该函数进行一次转换

HAL_StatusTypeDef HAL_ADC_Stop(ADC_HandleTypeDef *hadc)
功能:关闭 ADC,停止 ADC 规则组转换;
参数 1:ADC 句柄,根据实际需要填写;
返回:操作结果,HAL_OK,HAL_ERROR;

HAL_StatusTypeDef HAL_ADC_PollForConversion(ADC_HandleTypeDef *hadc, uint32_t Timeout)
功能:等待 ADC 规则组转换完成;
参数 1:ADC 句柄,根据实际需要填写;
参数 2:超时时间,单位 ms;
返回:操作结果,HAL_OK,HAL_ERROR,HAL_TIMEOUT;
示例:HAL_ADC_PollForConversion(&hadc1, 10); //等待转换完成

uint32_t HAL_ADC_GetValue(const ADC_HandleTypeDef *hadc)
功能:读取 ADC 规则组转换结果;
参数 1:ADC 句柄,根据实际需要填写;
返回:转换结果,ADC 采样寄存器值;
示例:ADC_Value = HAL_ADC_GetValue(&hadc1);// 读取转换的 AD 值

核心代码:
HAL_ADCEx_Calibration_Start(&hadc1,ADC_SINGLE_ENDED); //矫正 ADC
while (1)
{
HAL_ADC_Start(&hadc1); //开启 ADC1 转换
HAL_ADC_PollForConversion(&hadc1, 10); //等待转换完成,第二个参数表示超时时间,单位ms
if(HAL_IS_BIT_SET(HAL_ADC_GetState(&hadc1), HAL_ADC_STATE_REG_EOC))
ADC_Value = HAL_ADC_GetValue(&hadc1);// 读取转换的 AD 值
ADC_Vol = ADC_Value*3.3/4096;// 转换为电压
printf("ADC_Vol: %2.4f\r\n", ADC_Vol); //通过串口发送
HAL_Delay(50);
}

以上为 main 函数中外设初始化结束后的部分,首先对 ADC 进行校准,然后进入主循环,循环中开启 ADC 转换,等待转换完成后读取转换结果,然后将结果转换为浮点数电压值,最后通过串口打印至 PC,每 50ms 进行一次测量。

实验现象:
下载烧录后可以观察到上位机串口助手打印 ADC 测量数据。

微信图片_20241122152553.png

▲ 实验现象


2、ADC 中断方式单路采集实验

CubeMX 配置如下,保存后生成对应的配置代码:

微信图片_20241122152556.png
▲ CubeMX 进行中断配置

CubeMX 中的 ADC 基本配置与上例相同,这里需要开启 ADC1 的中断。

相关操作函数说明:
HAL_StatusTypeDef HAL_ADC_Start_IT(ADC_HandleTypeDef *hadc)
功能:使能 ADC,以中断开启 ADC 规则组转换;
参数 1:ADC 句柄,根据实际需要填写;
返回:操作结果,HAL_OK,HAL_ERROR;
示例:HAL_ADC_Start_IT(&hadc1); //开启 ADC1 转换
注意:在 ADC 转换完成之后会触发中断,中断中读取采样数据

HAL_StatusTypeDef HAL_ADC_Stop_IT(ADC_HandleTypeDef *hadc)
功能:关闭 ADC,停止规则组转换,关闭转换结束中断;
参数 1:ADC 句柄,根据实际需要填写;
返回:操作结果,HAL_OK,HAL_ERRORT;

核心代码:
HAL_ADCEx_Calibration_Start(&hadc1,ADC_SINGLE_ENDED); //矫正
while (1)
{
HAL_ADC_Start_IT(&hadc1); //中断方式启动 ADC
HAL_Delay(50);
}

以上为 main 函数中外设初始化结束后的部分,首先对 ADC 进行校准,然后进入主循环,循环中中断模式开启 ADC 转换,每 50ms 进行一次测量。

void HAL_ADC_ConvCpltCallback(ADC_HandleTypeDef *hadc)
{
if(hadc == &hadc1){if(HAL_IS_BIT_SET(HAL_ADC_GetState(&hadc1),
HAL_ADC_STATE_REG_EOC))
ADC_Value = HAL_ADC_GetValue(&hadc1);// 读取转换的 AD 值
ADC_Vol = ADC_Value*3.3/4096;// 转换为电压
printf("ADC_Vol: %2.4f\r\n", ADC_Vol); //通过串口发送
}
}

以上为 ADC 转换完成中断回调函数,该函数为 ADC 共用的,进入此函数首先要判断是哪个 ADC 转换完成了,然后读取相应 ADC 的数据寄存器,转换为浮点数电压,通过串口发送到上位机。

实验现象:
下载烧录后可以观察到上位机串口助手打印 ADC 测量数据。

微信图片_20241122152600.png

▲ 实验现象

3、ADC 使用 DMA 方式单路采集实验
CubeMX 配置如下,保存后生成对应的配置代码:

微信图片_20241122152607.png
▲ CubeMX 进行 ADC 配置

微信图片_20241122152610.png
▲ CubeMX 进行 DMA 配置

CubeMX 中的 ADC 基本配置需要开启连续转换模式,使能 DMA 请求,然后需要对 ADC1的 DMA 进行配置,使用连续传输模式,半字传输。

相关操作函数说明:
HAL_StatusTypeDef HAL_ADC_Start_DMA(ADC_HandleTypeDef *hadc, uint32_t *pData,uint32_t Length)
功能:使能 ADC,通过 DMA 进行规则组转换;
参数 1:ADC 句柄,根据实际需要填写;
参数 2:ADC 数据读取数组指针,一般为数组首地址;
参数 3:DMA 传输长度;
返回:操作结果,HAL_OK,HAL_ERROR;
示例:HAL_ADC_Start_DMA(&hadc1,(uint32_t *)ADC_Value,ADC_BUFFER_SIZE);//开启 ADC,开始 DMA 传输;

HAL_StatusTypeDef HAL_ADC_Stop_DMA(ADC_HandleTypeDef *hadc)
功能:关闭 ADC,停止 DMA 传输;
参数 1:ADC 句柄,根据实际需要填写;
返回:操作结果,HAL_OK,HAL_ERROR,HAL_BUSY;
示例:HAL_ADC_Stop_DMA(&hadc1);//停止 ADC

核心代码:
if(HAL_ADCEx_Calibration_Start(&hadc1,ADC_SINGLE_ENDED) != HAL_OK) //开始
ADC 校准
{
Error_Handler();
}
if(HAL_ADC_Start_DMA(&hadc1,(uint32_t *)ADC_Value,ADC_BUFFER_SIZE) !=HAL_OK) //开始 DMA 传输
{
Error_Handler();
}

以上为 main 函数中外设初始化结束后的部分,首先对 ADC 进行校准,然后开启 ADC,使用 DMA 进行传输。

void ADC_DMA_Handle(void)
{
if(__HAL_DMA_GET_FLAG(&hdma_adc1,DMA_FLAG_TC1))//检查 DMA 传输完成标志
{
__HAL_DMA_CLEAR_FLAG(&hdma_adc1,DMA_FLAG_TC1);//清楚 DMA 传输完成标志
HAL_ADC_Stop_DMA(&hadc1);//停止 ADC
float ave_vol = 0;uint16_t all=0;
for(uint8_t i = 0;i<ADC_BUFFER_SIZE;i++)
{
all += ADC_Value;
}
all = all/ADC_BUFFER_SIZE;
ave_vol = 3.3f/4096*all;
printf("ave_vol is %1.2f V \r\n",ave_vol);
HAL_ADC_Start_DMA(&hadc1,(uint32_t *)ADC_Value,ADC_BUFFER_SIZE);//重启 ADC
}
}
以上为中断处理函数,需要添加到 DMA 中断中。当进入 DMA 传输完成中断之后,该函数先停止 ADC 采集,对上一轮 DMA 采集到的数据进行求均值,然后转换为相应的浮点电压发送到上位机,最后重启 ADC 转换。

void DMA1_Channel1_IRQHandler(void)
{
ADC_DMA_Handle();
HAL_DMA_IRQHandler(&hdma_adc1);
}

以上为 DMA 中断处理函数,在其中添加 ADC_DMA_Handle();。

实验现象:
下载烧录后可以观察到上位机串口助手打印 ADC 测量数据。

微信图片_20241122152613.png

▲ 实验现象

4、内部温度采集实验

CubeMX 配置如下,保存后生成对应的配置代码:

微信图片_20241122152616.png

▲ CubeMX 进行温度传感器 ADC 配置

本实验进行内部温度传感器读取,需要注意采样时间需要给足,手册要求最小采样时间 5us,根据时钟频率进行换算。

相关操作函数说明:
__HAL_ADC_CALC_TEMPERATURE(__VREFANALOG_VOLTAGE__,__TEMPSENSOR_ADC_DATA__, __ADC_RESOLUTION__)
功能:将内部温度传感器的 ADC 采样值转换为温度;
参数 1:ADC 参考电压,单位 mv;
参数 2:ADC 采样寄存器数据,注意是读取的原始数据;
参数 3:ADC 采样位数,可选 ADC_RESOLUTION_12B、ADC_RESOLUTION_10B、ADC_RESOLUTION_8B、ADC_RESOLUTION_6B;
返回:转换后的温度值;
示例:
tem=__HAL_ADC_CALC_TEMPERATURE(vdda,ADC_Value,ADC_RESOLUTION_12B);//转换温度

核心代码:
HAL_ADCEx_Calibration_Start(&hadc1,ADC_SINGLE_ENDED); //矫正
while (1)
{
HAL_ADC_Start(&hadc1);
HAL_ADC_PollForConversion(&hadc1, 10); //等待转换完成,第二个参数表示超时时间,单位ms
if(HAL_IS_BIT_SET(HAL_ADC_GetState(&hadc1), HAL_ADC_STATE_REG_EOC))
ADC_Value = HAL_ADC_GetValue(&hadc1);// 读取转换的 AD 值
ADC_Vol = ADC_Value*3.3/4096;// 转换为电压
float tem;
tem=__HAL_ADC_CALC_TEMPERATURE(vdda,ADC_Value,ADC_RESOLUTION_12B);//转换温度
printf("ADC_Vol: %2.4f V Tem: %2.4f ℃\r\n", ADC_Vol,tem); //通过串口发送
HAL_Delay(500);
}

以上为 main 函数中外设初始化结束后的部分,首先对 ADC 进行校准,然后进入主循环,循环中开启 ADC 转换,等待转换完成后读取转换结果,然后将调用自带的温度转换函数将 ADC 采样值转换为温度,最后通过串口打印至 PC,每 500ms 进行一次测量。

实验现象:
下载烧录后可以观察到上位机串口助手打印温度测量数据。

微信图片_20241122152619.png
▲ 实验现象

5、VABT 电压采集实验
CubeMX 配置如下,保存后生成对应的配置代码:

微信图片_20241122152621.png

▲ CubeMX 进行 ADC 配置

本实验进行 VBAT 电压读取,基本配置与例 3.8.1 相同,需要注意采样时间需要给足,手册要求最小采样时间 12us,根据时钟频率进行换算。

核心代码:
HAL_ADCEx_Calibration_Start(&hadc1,ADC_SINGLE_ENDED); //矫正
while (1)
{
HAL_ADC_Start(&hadc1);
HAL_ADC_PollForConversion(&hadc1, 10); //等待转换完成,第二个参数表示超时时间,单位 ms
if(HAL_IS_BIT_SET(HAL_ADC_GetState(&hadc1), HAL_ADC_STATE_REG_EOC))
ADC_Value = HAL_ADC_GetValue(&hadc1);// 读取转换的 AD 值
ADC_Vol = 3*ADC_Value*3.3f/4096;// 转换为电压
printf("VBAT: %2.4f V \r\n", ADC_Vol); //通过串口发送
HAL_Delay(500);
}

以上为 main 函数中外设初始化结束后的部分,首先对 ADC 进行校准,然后进入主循环,循环中开启 ADC 转换,等待转换完成后读取转换结果,然后将结果转换为浮点数电压值,需要注意的是,VBAT 采样在内部进行了 1/3 分压,因此最终电压计算结果需要乘 3,最后通过串口打印至 PC,每 500ms 进行一次测量。

实验现象:
下载烧录后可以观察到上位机串口助手打印 ADC 测量数据。

微信图片_20241122152624.png
▲ 实验现象

6、内部基准电压采集实验
CubeMX 配置如下,保存后生成对应的配置代码:
微信图片_20241122152627.png

▲ CubeMX 进行温度传感器 ADC 配置

本实验进行内部参考电压读取,基本配置与例 3.8.1 相同,需要注意采样时间需要给足,手册要求最小采样时间 4us,根据时钟频率进行换算,读取之后通过内部参考电压反算外部参考电压。

相关操作函数说明:
__HAL_ADC_CALC_VREFANALOG_VOLTAGE(__VREFINT_ADC_DATA__,__ADC_RESOLUTION__)
功能:通过读取到的内部参考电压,反算实际参考电压;
参数 1:ADC 采样寄存器数据,注意是读取的原始数据;
参数 2:ADC 采样位数,可选 ADC_RESOLUTION_12B、ADC_RESOLUTION_10B、ADC_RESOLUTION_8B、ADC_RESOLUTION_6B;
返回:转换后的时间参考电压,单位 mv;
示例:VREF_MV =__HAL_ADC_CALC_VREFANALOG_VOLTAGE(ADC_Value,ADC_RESOLUTION_12B);//转换 VREF+

核心代码:
HAL_ADCEx_Calibration_Start(&hadc1,ADC_SINGLE_ENDED); //矫正
while (1)
{
HAL_ADC_Start(&hadc1);
HAL_ADC_PollForConversion(&hadc1, 10); //等待转换完成,第二个参数表示超时时间,单位 ms
if(HAL_IS_BIT_SET(HAL_ADC_GetState(&hadc1), HAL_ADC_STATE_REG_EOC))
ADC_Value = HAL_ADC_GetValue(&hadc1);// 读取转换的 AD 值
VREF_MV =
__HAL_ADC_CALC_VREFANALOG_VOLTAGE(ADC_Value,ADC_RESOLUTION_12B);//转换 VREF+
printf("VREF+: %d mV \r\n", VREF_MV); //通过串口发送
HAL_Delay(500);
}

以上为 main 函数中外设初始化结束后的部分,首先对 ADC 进行校准,然后进入主循环,循环中开启 ADC 转换,等待转换完成后读取转换结果,然后将调用自带的电压转换函数将内部参考电压 ADC 采样值转换为实际外部参考电压输入,最后通过串口打印至 PC,每500ms 进行一次测量。

实验现象:
下载烧录后可以观察到上位机串口助手打印外部参考电压测量数据。

微信图片_20241122152630.png

▲ 实验现象

7、定时器触发单通道 ADC 采样
CubeMX 配置如下,保存后生成对应的配置代码:
微信图片_20241122152633.png

▲ CubeMX 进行 ADC 触发配置
微信图片_20241122152635.png

▲ CubeMX 进行定时器配置
微信图片_20241122152638.png

▲ CubeMX 进行中断配置

CubeMX 中的 ADC 基本配置单通道采样相同,这里需要开启 ADC1 的中断,并且修改转换触发源,原来的软件触发改为使用定时器时间进行触发,TIM1 配置周期为 10ms,即每 10ms触发一次 ADC 转换。

相关操作函数说明:
HAL_StatusTypeDef HAL_ADC_Start_IT(ADC_HandleTypeDef *hadc)
功能:使能 ADC,以中断开启 ADC 规则组转换;
参数 1:ADC 句柄,根据实际需要填写;
返回:操作结果,HAL_OK,HAL_ERROR;
示例:HAL_ADC_Start_IT(&hadc1); //开启 ADC1 转换
注意:在 ADC 转换完成之后会触发中断,中断中读取采样数据

HAL_StatusTypeDef HAL_ADC_Stop_IT(ADC_HandleTypeDef *hadc)
功能:关闭 ADC,停止规则组转换,关闭转换结束中断;
参数 1:ADC 句柄,根据实际需要填写;
返回:操作结果,HAL_OK,HAL_ERRORT;

核心代码:
HAL_ADCEx_Calibration_Start(&hadc1,ADC_SINGLE_ENDED); //矫正
HAL_ADC_Start_IT(&hadc1);//中断方式启动 ADC
HAL_TIM_Base_Start(&htim1);//启动 TIM1

以上为 main 函数中外设初始化结束后的部分,首先对 ADC 进行校准,然后中断方式开启ADC 转换,这里主要是要开启 ADC 并且使能中断,然后开启 TIM1,通过 TIM 触发 ADC进行转换。

void HAL_ADC_ConvCpltCallback(ADC_HandleTypeDef *hadc)
{
if(hadc == &hadc1)
{
if(HAL_IS_BIT_SET(HAL_ADC_GetState(&hadc1),
HAL_ADC_STATE_REG_EOC))
ADC_Value = HAL_ADC_GetValue(&hadc1);// 读取转换的 AD 值
ADC_Vol = ADC_Value*3.3/4096;// 转换为电压
printf("ADC_Vol: %2.4f\r\n", ADC_Vol); //通过串口发送
}
}

以上为 ADC 转换完成中断回调函数,该函数为 ADC 共用的,进入此函数首先要判断是哪个 ADC 转换完成了,然后读取相应 ADC 的数据寄存器,转换为浮点数电压,通过串口发送到上位机。

实验现象:
下载烧录后可以观察到上位机串口助手打印 ADC 测量数据。
6.png

▲ 实验现象
九、DAC实验

实验目的:掌握和熟悉 DAC 单路输出的软件触发和定时器触发配置方法,配合 DMA 输出波形。

1、DAC 软件触发输出实验

CubeMX 配置如下,保存后生成对应的配置代码:

微信图片_20241122152645.png

▲ CubeMX 进行 DAC 输出配置

本实验进行软件触发 DAC 输出,开启 DAC1 的 OUT1 输出,使用外部输出引脚,使用普通模式,并且使能输出缓冲,将触发设置为软件触发。

相关操作函数说明:
HAL_StatusTypeDef HAL_DAC_SetValue(DAC_HandleTypeDef *hdac, uint32_t Channel,uint32_t Alignment, uint32_t Data)
功能:设置 DAC 输出电压;
参数 1:DAC 句柄,根据需要填写;
参数 2:DAC 通道,可选 DAC_CHANNEL_1、DAC_CHANNEL_2;
参数 3:DAC 数据格式,可选 DAC_ALIGN_12B_R(12 位右对齐)、DAC_ALIGN_12B_L(12 位左对齐)、DAC_ALIGN_8B_R(8 位右对齐);
参数 4:要写入的电压数据;
返回:操作结果,HAL_OK 或 HAL_ERROR;
示例:HAL_DAC_SetValue(&hdac1, DAC_CHANNEL_1, DAC_ALIGN_12B_R,sinewave[temp_i]);// 设置输出值注意:此函数不会改变实际的 DAC 输出,如果想要修改生效,还需要使用下面的函数

HAL_StatusTypeDef HAL_DAC_Start(DAC_HandleTypeDef *hdac, uint32_t Channel)
功能:开启外部 DAC 电压转换;
参数 1:DAC 句柄,根据需要填写;
参数 2:DAC 通道,可选 DAC_CHANNEL_1、DAC_CHANNEL_2;
返回:操作结果,HAL_OK 或 HAL_ERROR;
示例:HAL_DAC_Start(&hdac1,DAC_CHANNEL_1);// 改变输出值

HAL_StatusTypeDef HAL_DAC_Stop(DAC_HandleTypeDef *hdac, uint32_t Channel)
功能:停止外部 DAC 电压转换;
参数 1:DAC 句柄,根据需要填写;
参数 2:DAC 通道,可选 DAC_CHANNEL_1、DAC_CHANNEL_2;
返回:操作结果,HAL_OK 或 HAL_ERROR;

核心代码:
while (1)
{
for(temp_i=0; temp_i<60; temp_i++)
{
HAL_DAC_SetValue(&hdac1, DAC_CHANNEL_1, DAC_ALIGN_12B_R,
sinewave[temp_i]);// 设置输出值
HAL_DAC_Start(&hdac1,DAC_CHANNEL_1);// 改变输出值
HAL_Delay(1);// 延时一毫秒
}
}

以上为 main 函数中外设初始化结束后的部分,主循环中根据正弦表切换 DAC 电压输出,1ms 进行一次切换,正选表一共 60 个点。

实验现象:下载烧录后可以观察到 PA4 输出一个正弦波,频率约为 8.333Hz。

微信图片_20241122165909.png

▲ 实验现象

2、定时器触发 DMA 传输 DAC 输出实验

CubeMX 配置如下,保存后生成对应的配置代码:
微信图片_20241122152650.png

▲ CubeMX 进行 DAC 基本配置
微信图片_20241122152652.png

▲ CubeMX 进行 DMA 配置
微信图片_20241122152654.png

▲ CubeMX 进行 TIM4 配置

本实验进行定时器触发 DAC 输出,开启 DAC1 的 OUT1 输出,使用外部输出引脚,使用普通模式,并且使能输出缓冲,将触发设置为 TIM4 触发,配置 DMA,使用循环模式,整字传输,配置 TIM4,设置定时器周期为 1ms。

相关操作函数说明:
HAL_StatusTypeDef HAL_DAC_Start_DMA(DAC_HandleTypeDef *hdac, uint32_t Channel,const uint32_t *pData, uint32_t Length,uint32_t Alignment)
功能:通过 DMA 方式开始 DAC 转换;
参数 1:DAC 句柄,根据需要填写;
参数 2:DAC 通道,可选 DAC_CHANNEL_1、DAC_CHANNEL_2;
参数 3:要通过 DMA 发送的数据指针,一般为数据首地址;
参数 4:要通过 DMA 发送的数据长度;参数 5:发送数据格式,可选 DAC_ALIGN_12B_R(12 位右对齐)、DAC_ALIGN_12B_L(12 位左对齐)、DAC_ALIGN_8B_R(8 位右对齐);
返回:操作结果,HAL_OK 或 HAL_ERROR;
示例:HAL_DAC_Start_DMA(&hdac1, DAC_CHANNEL_1,(uint32_t *)dac_wave1,SAWTOOTH_NB_STEPS,DAC_ALIGN_12B_R) ;// DMA 方式设置输出值

核心代码:
//正弦表
uint32_t dac_wave1[80]={
0x0826,0x08C6,0x0965,0x0A02,0x0A9C,0x0B31,0x0BC2,0x0C4C,0x0CD0,0x0D4C,0x0DC0,0x0E2B,0x0E8C,0x0EE2,0x0F2E,0x0F6E,0x0FA3,0x0FCC,0x0FE8,0x0FF8,0x0FFB,0x0FF1,0x0FDB,0x0FB9,0x0F8A,0x0F50,0x0F0A,0x0EB8,0x0E5D,0x0DF7,0x0D87,0x0D0F,0x0C8F,0x0C08,0x0B7A,0x0AE7,0x0A4F,0x09B4,0x0916,0x0876,0x07D5,0x0735,0x0696,0x05F9,0x055F,0x04CA,0x0439,0x03AF,0x032B,0x02AF,0x023B,0x01D0,0x016F,0x0119,0x00CD,0x008D,0x0058,0x002F,0x0013,0x0003,0x0000,0x000A,0x0020,0x0042,0x0071,0x00AB,0x00F1,0x0143,0x019E,0x0204,0x0274,0x02EC,0x036C,0x03F3,0x0481,0x0514,0x05AC,0x0647,0x06E5,0x0785};
//正弦表点数
#define SAWTOOTH_NB_STEPS 80

以上为正弦表定义。

if (HAL_TIM_Base_Start(&htim4) != HAL_OK)//开启定时器 4
{
Error_Handler();
}
if (HAL_DAC_Start_DMA(&hdac1, DAC_CHANNEL_1,(uint32_t
*)dac_wave1,SAWTOOTH_NB_STEPS,DAC_ALIGN_12B_R) != HAL_OK) //开始 DMA 传输
{
Error_Handler();
}

以上为 main 函数中外设初始化结束后的部分,开启 TIM4 进行触发,以 DMA 方式开启DAC 转换输出。

实验现象:
下载烧录后可以观察到 PA4 输出一个正弦波,频率约为 12.5Hz。
微信图片_20241122152657.png

▲ 实验现象

3、定时器触发 DAC 输出噪声实验

CubeMX 配置如下,保存后生成对应的配置代码:
微信图片_20241122152659.png
▲ CubeMX 进行 DAC 输出配置
微信图片_20241122152701.png

▲ CubeMX 进行 TIM2 配置

本实验使用 TIM2 触发 DAC 进行输出,输出内容由 DAC 随机生成,产生噪声。

核心代码:
HAL_DAC_Start(&hdac1,DAC_CHANNEL_1);//启动 DAC 输出
HAL_TIM_Base_Start(&htim2);//启动 TIM2 触发 DAC

以上为 main 函数中外设初始化结束后的部分,只需要开启 DAC 输出和定时器即可。

实验现象:
下载烧录后可以观察到 PA4 输出随机噪声。
微信图片_20241122152703.png
▲ 实验现象

如有侵权请联系删除

转载自:AI电堂

收藏 评论0 发布时间:2024-11-22 15:27

举报

0个回答

所属标签

相似分享

官网相关资源

关于
我们是谁
投资者关系
意法半导体可持续发展举措
创新与技术
意法半导体官网
联系我们
联系ST分支机构
寻找销售人员和分销渠道
社区
媒体中心
活动与培训
隐私策略
隐私策略
Cookies管理
行使您的权利
官方最新发布
STM32N6 AI生态系统
STM32MCU,MPU高性能GUI
ST ACEPACK电源模块
意法半导体生物传感器
STM32Cube扩展软件包
关注我们
st-img 微信公众号
st-img 手机版