![shequ.stmicroelectronics.cn](./template/st_v1/static/img/logo2.png)
六、SPI 实验 实验目的:掌握和熟悉 SPI 软件模拟和硬件控制的使用和配置方法。 / h0 z& [+ O" F# ~: i 1、软件模拟 SPI 驱动 TFT 实验 CubeMX 配置如下,保存后生成对应的配置代码: ![]() ▲ CubeMX 配置 本实验使用软件模拟 SPI,只需要对相应 IO 进行配置即可,注意需要配置 IO 速度等级,CLK 信号和 SDA 信号频率较高,需要配置为 very high。+ Z. ~' l3 s! Y/ [- I 0 w+ d5 K3 r5 m! q d5 K7 F% h. L 相关操作函数说明:5 \, p0 z1 v: H void Lcd_Reset(void) " F& z) d& P8 D3 j9 n. ?3 z 功能:液晶硬复位函数; 参数:无; 返回:无;6 S7 y+ P6 h. X4 _' j; a: T 说明:液晶初始化前需执行一次复位操作 void LCD_Initial(void); U2 B' @* m1 j8 \ 功能:初始化液晶;) ?( K4 w; N! X 参数:无; 返回:无;9 P6 ~1 `2 [6 [. V! Q' A& N: H3 y 说明:在对液晶写入内容前需要进行初始化配置;# v3 w' V* I8 K% O4 U void Lcd_ColorBox(unsigned int xStart,unsigned int yStart,unsigned int xLong,unsigned int yLong,unsigned int Color) 功能:Lcd 矩形填充函数;3 h6 B: v& ?" O. C4 F' ~ 参数 1:x 方向的起始点;/ @5 I8 q @0 _, @4 s 参数 2:y 方向的起始点;% |* S) j# ~% [! [2 R 参数 3:x 方向的长度; 参数 4:y 方向的长度;* t; \; O- O7 U8 o+ G/ l- z 参数 5:填充的颜色;/ O/ {' ^ F2 ^) Z 返回:无; 说明:将指定区域内填充指定颜色,常用于清屏 void BlockWrite(unsigned int Xstart,unsigned int Xend,unsigned int Ystart,unsigned int Yend) 功能:在一个指定位置开一个矩形框; 参数 1:x 方向的起始点; 参数 2:x 方向的终点;. B" y- W4 t8 R7 b( B+ v 参数 3:y 方向的起始点; 参数 4:y 方向的终点; 返回:无; 说明:开一个矩形框,方便接下来往这个框填充数据;! Z3 z* R- Q+ P1 E void DrawPixel(unsigned int x, unsigned int y, int Color) 功能:在 x,y 坐标上打一个颜色为 Color 的点; 参数 1:x 坐标;. w1 p9 R! n7 C, f/ n& k 参数 2:y 坐标;% f7 R$ q# b5 x( O: n, P 参数 3:点的颜色; 返回:无;; |7 U! d' ?% g5 r+ M void LCD_PutString(unsigned short x, unsigned short y, char *s, unsigned int fColor, unsigned int bColor,unsigned char flag) z/ g; i- I) g. {( V. Q; Z' A$ {% v & G+ D5 v4 o @4 I* l 功能:显示一个字符串; 参数 1:起始点 x 坐标;& v8 v1 `( I. f 参数 2:起始点 y 坐标;) }* ^5 ~0 u7 q$ c% K6 U 参数 3:字符串指针; 参数 4:前景色;8 P9 \7 y( p' d9 a9 k. f4 |; f2 P 参数 5:背景色; 参数 6:有无背景色;1 p# c1 L8 m( E; I6 w2 V 返回:无 q( N: K* e- X" P 核心代码: LCD_Initial(); Lcd_ColorBox(0,0,XSIZE_PHYS,YSIZE_PHYS,Blue);//用蓝色清屏8 k$ z4 L! K( O2 G5 Z Lcd_ColorBox(0,0,XSIZE_PHYS,YSIZE_PHYS,Red);//用红色清屏9 D) x* [1 M2 c# n0 H Lcd_ColorBox(0,0,XSIZE_PHYS,YSIZE_PHYS,Green);//用绿色清屏7 [! | p6 g5 J& F# U8 g6 Y) W Lcd_ColorBox(0,0,XSIZE_PHYS,YSIZE_PHYS,White);//用白色清屏9 |' K Y0 l4 |! f( Q) q LCD_PutString(10,10,"STM32G474Test",Red,White,0);//显示字符6 b- E" X U( }4 X: ^( I( | 7 d2 Z( w4 I9 W+ P, |1 N4 ~ 在 main 函数中进行过外设初始化之后,对 LCD 进行初始化,然后分别用四种颜色清屏,最后显示测试字符。/ B7 [% A& x4 q9 u9 K7 W8 m( m1 e 6 X1 g* q% T: s 实验现象: 下载烧录后可以观察到屏幕分别刷新蓝红绿白四种颜色,最后显示测试字符STM32G474Test。 C" ?6 x+ ^7 X( z1 {+ Q+ ] 2、硬件 SPI 驱动 TFT 实验 CubeMX 配置如下,保存后生成对应的配置代码: & R; G! ], A7 B/ y R4 b! R9 r6 a1 z( A ![]() ▲ CubeMX 进行 SPI 配置 ![]() ▲ CubeMX 进行 IO 速度配置% F; B. X) j j0 u q 本实验使用硬件 SPI,需要配置 SPI 的时钟分频,配置出合适的时钟速率,另外需要注意设置时钟信号的空闲电平以及采样边沿,还需要将高速的信号 IO 速度进行配置,其他 IO配置与软件模拟 SPI 相同。 相关操作函数说明: HAL_StatusTypeDef HAL_SPI_Transmit(SPI_HandleTypeDef *hspi, uint8_t *pData, uint16_t Size, uint32_t Timeout) 功能:通过硬件 SPI 发送一组数据; * I0 M# @9 x$ }# V7 j参数 1:SPI 句柄,根据实际需要填写; 参数 2:要发送数据的指针,常见为发送数据数组的首地址; : f+ m+ J( a/ t+ c$ y3 R v参数 3:发送数据长度,单位字节; 参数 4:发送超时时间,单位 ms; ! m% d: u+ L% S4 J返回:操作结果,HAL_OK,HAL_ERROR; 示例:HAL_SPI_Transmit ( &hspi4,data_color,2*xLong,10 );//通过 SPI4 发送颜色数据 HAL_StatusTypeDef HAL_SPI_Receive(SPI_HandleTypeDef *hspi, uint8_t *pData, uint16_t Size, uint32_t Timeout) 功能:通过硬件 SPI 接收一组数据; 7 c: E% c6 I5 B) D% N3 a1 R& {参数 1:SPI 句柄,根据实际需要填写; 参数 2:要接收数据保存指针; # w8 [: M7 k' O. ]" X参数 3:接收数据长度,单位字节; * U7 }0 {' H5 w& a2 A4 @( [参数 4:接收超时时间,单位 ms; 返回:操作结果,HAL_OK,HAL_ERROR; HAL_StatusTypeDef HAL_SPI_TransmitReceive(SPI_HandleTypeDef *hspi, uint8_t *pTxData, uint8_t *pRxData, uint16_t Size, uint32_t Timeout) 功能:通过硬件 SPI 交换一组数据; ; \. T0 y' \, l6 ~4 ]参数 1:SPI 句柄,根据实际需要填写; 参数 2:要发送数据的指针,常见为发送数据数组的首地址; 参数 3:要接收数据的指针,接收数据数组的首地址; 参数 4:数据长度,单位字节; 参数 5:超时时间,单位 ms; 返回:操作结果,HAL_OK,HAL_ERROR; % A( K7 r0 K( ]0 Z, J2 ?: b4 o/ O/ V- e' M 6 k" @ U' f1 z3 I2 V核心代码: $ k8 I4 V4 M* Q nLCD_Initial(); Lcd_ColorBox(0,0,XSIZE_PHYS,YSIZE_PHYS,Blue);//用蓝色清屏 ; a/ G+ N. |) u9 S y0 wLcd_ColorBox(0,0,XSIZE_PHYS,YSIZE_PHYS,Red);//用红色清屏 . {% i8 x& e! @8 a* JLcd_ColorBox(0,0,XSIZE_PHYS,YSIZE_PHYS,Green);//用绿色清屏 Lcd_ColorBox(0,0,XSIZE_PHYS,YSIZE_PHYS,White);//用白色清屏 1 a" x' j% B, o. N5 a+ T" _LCD_PutString(10,10,"STM32G474Test",Red,White,0);//显示字符 , }& r: r. j- |* @5 f# \9 M 9 b' b b9 w4 L' b+ h- q' F在 main 函数中进行过外设初始化之后,对 LCD 进行初始化,然后分别用四种颜色清屏,最后显示测试字符。 # x4 a0 f1 x' y: }4 C实验现象: & a) R6 l/ O9 `* R, H下载烧录后可以观察到屏幕分别刷新蓝红绿白四种颜色,最后显示测试字符STM32G474Test。 5 q- i. y* f! F0 T( q3 f6 v, ]# E2 Z! u5 Q2 ]* X- L 3、硬件 SPI 驱动 TFT 实验(DMA) CubeMX 配置如下,保存后生成对应的配置代码: ![]() ▲ CubeMX 进行 SPI 的 DMA 配置 本实验使用硬件 SPI,使用 DMA 进行发送。 $ k) h3 I1 r" D* x" A& @ 相关操作函数说明: HAL_StatusTypeDef HAL_SPI_Transmit_DMA(SPI_HandleTypeDef *hspi, uint8_t *pData,uint16_t Size) 功能:通过硬件 SPI 使用 DMA 方式发送一组数据; 参数 1:SPI 句柄,根据实际需要填写; 参数 2:要发送数据的指针,常见为发送数据数组的首地址; 参数 3:发送数据长度,单位字节; 返回:操作结果,HAL_OK,HAL_ERROR; 示例:HAL_SPI_Transmit_DMA ( &hspi4,data_color,2*xLong );//通过 SPI4 的 DMA 方式发送颜色数据 HAL_StatusTypeDef HAL_SPI_Receive_DMA(SPI_HandleTypeDef *hspi, uint8_t *pData,uint16_t Size) , ^( S) G1 [# Z% X- d 功能:通过硬件 SPI 的 DMA 方式接收一组数据; 参数 1:SPI 句柄,根据实际需要填写; 参数 2:要接收数据保存指针; 参数 3:接收数据长度,单位字节; 返回:操作结果,HAL_OK,HAL_ERROR; HAL_StatusTypeDef HAL_SPI_TransmitReceive_DMA(SPI_HandleTypeDef *hspi, uint8_t*pTxData, uint8_t *pRxData, uint16_t Size) 4 o) v2 P. `- ~$ u( {! n/ q 功能:通过硬件 SPI 的 DMA 方式交换一组数据; 参数 1:SPI 句柄,根据实际需要填写; 参数 2:要发送数据的指针,常见为发送数据数组的首地址; 参数 3:要接收数据的指针,接收数据数组的首地址; 参数 4:数据长度,单位字节; 返回:操作结果,HAL_OK,HAL_ERROR; 注意:使用相应 DMA 时需要对该 DMA 请求进行配置; 2 s% u8 B" X- S: v& ]2 ]' d2 c 核心代码: //发送函数修改 if((temp+1) % xLong == 0) { HAL_SPI_Transmit_DMA(&hspi4,data_color,2*xLong); while(!dma_flag_temp); dma_flag_temp = 0; } . k) }' ]2 P& J( C# M7 V 使用 DMA 方式进行发送时需要确保上一次 DMA 发送已经完成,要避免重复请求。 void DMA1_Channel1_IRQHandler(void) { if(__HAL_DMA_GET_FLAG(&hdma_spi4_tx,DMA_FLAG_TC1)) { dma_flag_temp=1; __HAL_DMA_CLEAR_FLAG(&hdma_spi4_tx,DMA_FLAG_TC1); HAL_SPI_DMAStop(&hspi4); } HAL_DMA_IRQHandler(&hdma_spi4_tx); } 在 DMA 中断中判断是否发生了 DMA 传输完成事件,如果 DMA 传输完成则将相应标志位置位,并清除标志。 LCD_Initial();Lcd_ColorBox(0,0,XSIZE_PHYS,YSIZE_PHYS,Blue);//用蓝色清屏 Lcd_ColorBox(0,0,XSIZE_PHYS,YSIZE_PHYS,Red);//用红色清屏 Lcd_ColorBox(0,0,XSIZE_PHYS,YSIZE_PHYS,Green);//用绿色清屏 Lcd_ColorBox(0,0,XSIZE_PHYS,YSIZE_PHYS,White);//用白色清屏 LCD_PutString(10,10,"STM32G474Test",Red,White,0);//显示字符 / N3 \$ ]6 m0 a$ \4 C 在 main 函数中进行过外设初始化之后,对 LCD 进行初始化,然后分别用四种颜色清屏,最后显示测试字符。 : \5 W6 ?/ g+ r4 i 实验现象: 下载烧录后可以观察到屏幕分别刷新蓝红绿白四种颜色,最后显示测试字符STM32G474Test。 9 Y1 y) J* e; Z: o2 l 七、IIC实验 , \8 x% p \. u% p C8 f9 w实验目的:掌握和熟悉 IIC 软件模拟和硬件控制的使用和配置方法。 1、软件模拟 IIC 驱动 24C02 实验 CubeMX 配置如下,保存后生成对应的配置代码: ![]() ▲ CubeMX 进行软件 IIC 的 IO 配置 本实验使用软件 IIC 模拟,只需要配置 IO,初始 IO 配置都配置为输出 IO 即可,24C02 外围电路有上拉电阻,不需要配置内部上拉。 相关操作函数说明: void SDA_Input_Mode() 功能:将 SDA 切换到输入模式; 参数:无; 返回:无; 说明:SDA 是双向的,在进行数据读取时需要切换到输入模式 1 E9 S! ?* E! ^$ k( G' X. N9 qvoid SDA_Output_Mode() 功能:将 SDA 切换到输出模式; 参数:无; 返回:无; 说明:SDA 是双向的,在进行数据发送时需要切换到输出模式 3 m# k; h3 q$ u N% \void I2CStart(void) 功能:模拟 IIC 的起始信号; 参数:无; 返回:无; ( S# I0 s: p5 c5 F# {# w* s% O7 H* tvoid I2CStop(void) 功能:模拟 IIC 的停止信号; 参数:无; 返回:无; unsigned char I2CWaitAck(void) 功能:模拟 IIC 等待应答; 参数:无; 返回:应答结果,ERROR 或 SUCCESS; / }+ f- v+ k" d, e ^void I2CSendAck(void) 功能:模拟 IIC 的应答信号; 参数:无; 返回:无; * f; I# C9 O# R! uvoid I2CSendNotAck(void) 功能:模拟 IIC 的非应答信号; 参数:无; 返回:无; ; B1 J8 Z% [7 m# |: fvoid I2CSendByte(unsigned char cSendByte) 功能:通过模拟 IIC 发送一个字节; 参数:需要发送的字节; 返回:无; |# W2 L4 `% A; `5 ^unsigned char I2CReceiveByte(void) 功能:通过模拟 IIC 接收一个字节; 参数:无; 返回:接收到的字节; 核心代码: //24C02 读取一个字节 uint8_t x24c02_read(uint8_t address) { unsigned char val; I2CStart();//起始信号 I2CSendByte(0xa0);//发送器件写地址 I2CWaitAck();//等待应答 I2CSendByte(address);//发送读取的内存地址 I2CWaitAck();//等待应答 I2CStart();//起始信号 I2CSendByte(0xa1);//发送器件读地址 I2CWaitAck();//等待应答 val = I2CReceiveByte();//接收一个字节 I2CWaitAck();//等待应答 I2CStop();//停止信号 return(val); } //24C02 读取写入一个字节 void x24c02_write(uint8_t address, uint8_t info) { I2CStart();//起始信号 I2CSendByte(0xa0);//发送器件写地址 I2CWaitAck();//等待应答 I2CSendByte(address);//发送写入的内存地址 I2CWaitAck();//等待应答 I2CSendByte(info);//发送写入内容 I2CWaitAck();//等待应答 I2CStop();//停止信号 } . B2 a$ R6 Y; U 上述两个函数为 24C02 的读写函数,写器件地址为 0xA0,读器件地址为 0xA1,地址由外部电路连接决定。 I2CInit(); uint32_t i; 6 }9 E) _+ F8 }- n: w+ M+ Zprintf(" 24C02 Test ....\r\n\r\n"); //向 0x00 内存地址写入数据 for(i = 0; i < 6; i++) { x24c02_write(i,Data_T); } printf(" 24C02 Write ok\r\n"); HAL_Delay(100); //从 0x00 内存地址读出数据 for(i = 0; i < DataSize; i++) Data_R=x24c02_read(i); printf(" 24C02 Read ok\r\n"); printf("24C02 Read Data : \r\n"); for(i = 0; i < DataSize; i++) printf("0x%02X ", Data_R); printf("\r\n\r\n"); if(memcmp(Data_T, Data_R, DataSize) == 0) { printf(" 24C02 Test OK\r\n"); } else { printf(" 24C02 Test Failed\r\n"); } 以上为 main 函数中外设初始化结束后的部分,通过软件模拟 IIC 向 24C02 内存地址写入一段设定好的数据,然后将这段数据读出,最后进行对比。 % Q2 V& l4 p% S8 T, t实验现象: 下载烧录后可以观察到上位机串口助手打印测试数据。 ![]() ▲ 实验现象 3 H! G( d7 F8 g# Y) g$ z7 f' ~) u 2、硬件 IIC 驱动 24C02 实验 CubeMX 配置如下,保存后生成对应的配置代码: . h! g- j! q/ \2 O7 K![]() ▲ CubeMX 进行 IIC 配置 本实验使用硬件 IIC,启用之后 IIC 的配置不需要改变。 4 H* Q) T0 ~1 W, h1 r相关操作函数说明: HAL_StatusTypeDef HAL_I2C_Mem_Write(I2C_HandleTypeDef *hi2c, uint16_t DevAddress,uint16_t MemAddress,uint16_t MemAddSize, uint8_t *pData, uint16_t Size, uint32_t Timeout) 功能:以阻塞方式将一定量的数据写入指定的内存地址; 参数 1:I2C 句柄,根据实际需要填写; 参数 2:设备地址,注意这里填入的地址应该是左移一位之后的地址; 参数 3:目标内存的地址; 参数 4:目标内存的地址大小,可选 8 位(I2C_MEMADD_SIZE_8BIT),16 位(I2C_MEMADD_SIZE_16BIT); 参数 5:带发送数据的指针; 参数 6:待发送的数据量; 参数 7:发送超时时间; 返回:操作结果,HAL_OK,HAL_ERROR; 示例: HAL_I2C_Mem_Write(&hi2c3,Addr_W,0x01,I2C_MEMADD_SIZE_8BIT,Data_T,DataSize,0xFF);//通过 IIC 向目标器件的 0x01 地址写入待发送数据; + {1 m" H, q% P" P; H, ^HAL_StatusTypeDef HAL_I2C_Mem_Read(I2C_HandleTypeDef *hi2c, uint16_t DevAddress,uint16_t MemAddress,uint16_t MemAddSize, uint8_t *pData, uint16_t Size, uint32_t Timeout) 功能:通过硬件 IIC 从一个特定的内存地址以阻塞模式读取一定量的数据; 参数 1:I2C 句柄,根据实际需要填写; 参数 2:设备地址,注意这里填入的地址应该是左移一位之后的地址; 参数 3:目标内存的地址; 参数 4:目标内存的地址大小,可选 8 位(I2C_MEMADD_SIZE_8BIT),16 位(I2C_MEMADD_SIZE_16BIT); 参数 5:带接收数据保存地址的指针; 参数 6:待接收的数据量; 参数 7:接收超时时间; 返回:操作结果,HAL_OK,HAL_ERROR,HAL_BUSY; 示例: HAL_I2C_Mem_Read(&hi2c3,Addr_R,0x01,I2C_MEMADD_SIZE_8BIT,Data_R,DataSize,0xFF);//通过 IIC 从目标器件的 0x01 地址读取数据; 核心代码: uint32_t i; printf(" 24C02 Test ....\r\n\r\n"); //向 0x01 内存地址写入数据 HAL_I2C_Mem_Write(&hi2c3,Addr_W,0x01,I2C_MEMADD_SIZE_8BIT,Data_T,DataSize,0xFF); printf(" 24C02 Write ok\r\n"); HAL_Delay(100); //从 0x01 内存地址读出数据 HAL_I2C_Mem_Read(&hi2c3,Addr_R,0x01,I2C_MEMADD_SIZE_8BIT,Data_R,DataSize,0xFF); printf(" 24C02 Read ok\r\n"); printf("24C02 Read Data : \r\n"); for(i = 0; i < DataSize; i++) printf("0x%02X ", Data_R); printf("\r\n\r\n"); if(memcmp(Data_T, Data_R, DataSize) == 0) { printf(" 24C02 Test OK\r\n"); } else { printf(" 24C02 Test Failed\r\n"); } 7 ~9 W( f7 L' W5 d% I 以上为 main 函数中外设初始化结束后的部分,通过硬件 IIC 向 24C02 内存地址写入一段设定好的数据,然后将这段数据读出,最后进行对比。 m: r/ B! n1 B# F实验现象: 下载烧录后可以观察到上位机串口助手打印测试数据。 ![]() ▲ 实验现象 8 s s" o, R* _1 k9 }6 |5 ?& E7 O* C% S 七、ADC实验 4 S$ O, M6 b4 B6 T5 O8 u实验目的:掌握和熟悉 ADC 单路采集和多路采集的使用和配置方法,包含查询,中断,DMA等方式。 5 P+ ?& Y+ g$ W M" A$ I9 S1、ADC 查询方式单路采集实验 CubeMX 配置如下,保存后生成对应的配置代码: ![]() ▲ CubeMX 进行 ADC 配置 本实验进行单通道 ADC 软件触发采样,只需要对 ADC 进行简单配置即可,同时使用串口进行数据输出,串口与时钟系统配置上文已经展示,参照上文实验进行配置。 1 e: d* R- t4 N, e9 h8 T相关操作函数说明: HAL_StatusTypeDef HAL_ADCEx_Calibration_Start(ADC_HandleTypeDef *hadc, uint32_t SingleDiff) 功能:对 ADC 进行校准; 参数 1:ADC 句柄,根据实际需要填写; 参数 2:ADC 采样模式,可选 ADC_DIFFERENTIAL_ENDED(差分采样模式)或ADC_SINGLE_ENDED(单端采样模式); 返回:操作结果,HAL_OK,HAL_ERROR; 示例:HAL_ADCEx_Calibration_Start(&hadc1,ADC_SINGLE_ENDED); //对 ADC1 进行单端采样模式下的校准; HAL_StatusTypeDef HAL_ADC_Start(ADC_HandleTypeDef *hadc) 功能:使能 ADC,开启 ADC 规则组转换; 参数 1:ADC 句柄,根据实际需要填写; 返回:操作结果,HAL_OK,HAL_ERROR,HAL_BUSY; 示例:HAL_ADC_Start(&hadc1); //开启 ADC1 转换 注意:如果不是工作在连续模式,运行一次该函数进行一次转换 HAL_StatusTypeDef HAL_ADC_Stop(ADC_HandleTypeDef *hadc) 功能:关闭 ADC,停止 ADC 规则组转换; 参数 1:ADC 句柄,根据实际需要填写; 返回:操作结果,HAL_OK,HAL_ERROR; HAL_StatusTypeDef HAL_ADC_PollForConversion(ADC_HandleTypeDef *hadc, uint32_t Timeout) 功能:等待 ADC 规则组转换完成; 参数 1:ADC 句柄,根据实际需要填写; 参数 2:超时时间,单位 ms; 返回:操作结果,HAL_OK,HAL_ERROR,HAL_TIMEOUT; 示例:HAL_ADC_PollForConversion(&hadc1, 10); //等待转换完成 5 y1 b8 T7 [) A' f% }: h7 Tuint32_t HAL_ADC_GetValue(const ADC_HandleTypeDef *hadc) 功能:读取 ADC 规则组转换结果; 参数 1:ADC 句柄,根据实际需要填写; 返回:转换结果,ADC 采样寄存器值; 示例:ADC_Value = HAL_ADC_GetValue(&hadc1);// 读取转换的 AD 值 核心代码: HAL_ADCEx_Calibration_Start(&hadc1,ADC_SINGLE_ENDED); //矫正 ADC while (1) { HAL_ADC_Start(&hadc1); //开启 ADC1 转换 HAL_ADC_PollForConversion(&hadc1, 10); //等待转换完成,第二个参数表示超时时间,单位ms if(HAL_IS_BIT_SET(HAL_ADC_GetState(&hadc1), HAL_ADC_STATE_REG_EOC)) ADC_Value = HAL_ADC_GetValue(&hadc1);// 读取转换的 AD 值 ADC_Vol = ADC_Value*3.3/4096;// 转换为电压 printf("ADC_Vol: %2.4f\r\n", ADC_Vol); //通过串口发送 HAL_Delay(50); } 以上为 main 函数中外设初始化结束后的部分,首先对 ADC 进行校准,然后进入主循环,循环中开启 ADC 转换,等待转换完成后读取转换结果,然后将结果转换为浮点数电压值,最后通过串口打印至 PC,每 50ms 进行一次测量。 实验现象: 下载烧录后可以观察到上位机串口助手打印 ADC 测量数据。 ![]() ▲ 实验现象 ( _% N9 n/ y* z: _- L2 U* s: B$ f Z 2、ADC 中断方式单路采集实验 CubeMX 配置如下,保存后生成对应的配置代码: ![]() ▲ CubeMX 进行中断配置 CubeMX 中的 ADC 基本配置与上例相同,这里需要开启 ADC1 的中断。 9 w. Y+ X# j/ u相关操作函数说明: HAL_StatusTypeDef HAL_ADC_Start_IT(ADC_HandleTypeDef *hadc) 功能:使能 ADC,以中断开启 ADC 规则组转换; 参数 1:ADC 句柄,根据实际需要填写; 返回:操作结果,HAL_OK,HAL_ERROR; 示例:HAL_ADC_Start_IT(&hadc1); //开启 ADC1 转换 注意:在 ADC 转换完成之后会触发中断,中断中读取采样数据 HAL_StatusTypeDef HAL_ADC_Stop_IT(ADC_HandleTypeDef *hadc) 功能:关闭 ADC,停止规则组转换,关闭转换结束中断; 参数 1:ADC 句柄,根据实际需要填写; 返回:操作结果,HAL_OK,HAL_ERRORT; 核心代码: HAL_ADCEx_Calibration_Start(&hadc1,ADC_SINGLE_ENDED); //矫正 while (1) { HAL_ADC_Start_IT(&hadc1); //中断方式启动 ADC HAL_Delay(50); } 以上为 main 函数中外设初始化结束后的部分,首先对 ADC 进行校准,然后进入主循环,循环中中断模式开启 ADC 转换,每 50ms 进行一次测量。 0 u1 t. K6 d0 Y+ [ void HAL_ADC_ConvCpltCallback(ADC_HandleTypeDef *hadc) { if(hadc == &hadc1){if(HAL_IS_BIT_SET(HAL_ADC_GetState(&hadc1), HAL_ADC_STATE_REG_EOC)) ADC_Value = HAL_ADC_GetValue(&hadc1);// 读取转换的 AD 值 ADC_Vol = ADC_Value*3.3/4096;// 转换为电压 printf("ADC_Vol: %2.4f\r\n", ADC_Vol); //通过串口发送 } } 以上为 ADC 转换完成中断回调函数,该函数为 ADC 共用的,进入此函数首先要判断是哪个 ADC 转换完成了,然后读取相应 ADC 的数据寄存器,转换为浮点数电压,通过串口发送到上位机。 ; H" X, H) |! j实验现象: 下载烧录后可以观察到上位机串口助手打印 ADC 测量数据。 7 r7 \9 U7 F% i2 l1 _$ u' y![]() ▲ 实验现象 ! {* `. f; K0 u8 I3、ADC 使用 DMA 方式单路采集实验 CubeMX 配置如下,保存后生成对应的配置代码: 5 r1 Q, i2 @# c2 |7 m( ?- ?![]() ▲ CubeMX 进行 ADC 配置 ![]() ▲ CubeMX 进行 DMA 配置 9 k) ^3 p& f e" e& R9 h3 ~CubeMX 中的 ADC 基本配置需要开启连续转换模式,使能 DMA 请求,然后需要对 ADC1的 DMA 进行配置,使用连续传输模式,半字传输。 : M8 f/ y' P+ A+ `相关操作函数说明: HAL_StatusTypeDef HAL_ADC_Start_DMA(ADC_HandleTypeDef *hadc, uint32_t *pData,uint32_t Length) 功能:使能 ADC,通过 DMA 进行规则组转换; 参数 1:ADC 句柄,根据实际需要填写; 参数 2:ADC 数据读取数组指针,一般为数组首地址; 参数 3:DMA 传输长度; 返回:操作结果,HAL_OK,HAL_ERROR; 示例:HAL_ADC_Start_DMA(&hadc1,(uint32_t *)ADC_Value,ADC_BUFFER_SIZE);//开启 ADC,开始 DMA 传输; 6 V; U0 x q0 Y2 W& k- Q- wHAL_StatusTypeDef HAL_ADC_Stop_DMA(ADC_HandleTypeDef *hadc) 功能:关闭 ADC,停止 DMA 传输; 参数 1:ADC 句柄,根据实际需要填写; 返回:操作结果,HAL_OK,HAL_ERROR,HAL_BUSY; 示例:HAL_ADC_Stop_DMA(&hadc1);//停止 ADC % T$ a' Z3 X3 n8 F核心代码: if(HAL_ADCEx_Calibration_Start(&hadc1,ADC_SINGLE_ENDED) != HAL_OK) //开始 ADC 校准 { Error_Handler(); } if(HAL_ADC_Start_DMA(&hadc1,(uint32_t *)ADC_Value,ADC_BUFFER_SIZE) !=HAL_OK) //开始 DMA 传输 { Error_Handler(); } 3 k: x2 D; b8 h以上为 main 函数中外设初始化结束后的部分,首先对 ADC 进行校准,然后开启 ADC,使用 DMA 进行传输。 v* A( }) F* Q0 @void ADC_DMA_Handle(void) { if(__HAL_DMA_GET_FLAG(&hdma_adc1,DMA_FLAG_TC1))//检查 DMA 传输完成标志 { __HAL_DMA_CLEAR_FLAG(&hdma_adc1,DMA_FLAG_TC1);//清楚 DMA 传输完成标志 HAL_ADC_Stop_DMA(&hadc1);//停止 ADC float ave_vol = 0;uint16_t all=0; for(uint8_t i = 0;i<ADC_BUFFER_SIZE;i++) { all += ADC_Value; } all = all/ADC_BUFFER_SIZE; ave_vol = 3.3f/4096*all; printf("ave_vol is %1.2f V \r\n",ave_vol); HAL_ADC_Start_DMA(&hadc1,(uint32_t *)ADC_Value,ADC_BUFFER_SIZE);//重启 ADC } } 以上为中断处理函数,需要添加到 DMA 中断中。当进入 DMA 传输完成中断之后,该函数先停止 ADC 采集,对上一轮 DMA 采集到的数据进行求均值,然后转换为相应的浮点电压发送到上位机,最后重启 ADC 转换。 void DMA1_Channel1_IRQHandler(void) { ADC_DMA_Handle(); HAL_DMA_IRQHandler(&hdma_adc1); } . y3 R, g, j8 u3 I; a0 u; R! I 以上为 DMA 中断处理函数,在其中添加 ADC_DMA_Handle();。 ( z0 e7 |1 b9 _- ^+ t实验现象: 下载烧录后可以观察到上位机串口助手打印 ADC 测量数据。 ![]() ▲ 实验现象 4、内部温度采集实验 " ~' e, ^. t$ I/ C, ~9 VCubeMX 配置如下,保存后生成对应的配置代码: 4 f" O* b- l( S2 q1 G* }+ e0 p![]() ▲ CubeMX 进行温度传感器 ADC 配置 : a U% I+ |4 v, u2 c6 J' F本实验进行内部温度传感器读取,需要注意采样时间需要给足,手册要求最小采样时间 5us,根据时钟频率进行换算。 2 V) H. o# e; Y$ Z2 u* T% B相关操作函数说明: __HAL_ADC_CALC_TEMPERATURE(__VREFANALOG_VOLTAGE__,__TEMPSENSOR_ADC_DATA__, __ADC_RESOLUTION__) 功能:将内部温度传感器的 ADC 采样值转换为温度; 参数 1:ADC 参考电压,单位 mv; 参数 2:ADC 采样寄存器数据,注意是读取的原始数据; 参数 3:ADC 采样位数,可选 ADC_RESOLUTION_12B、ADC_RESOLUTION_10B、ADC_RESOLUTION_8B、ADC_RESOLUTION_6B; 返回:转换后的温度值; 示例: tem=__HAL_ADC_CALC_TEMPERATURE(vdda,ADC_Value,ADC_RESOLUTION_12B);//转换温度 + N% d$ L6 v. ~6 x+ U/ j ]! j核心代码: HAL_ADCEx_Calibration_Start(&hadc1,ADC_SINGLE_ENDED); //矫正 while (1) { HAL_ADC_Start(&hadc1); HAL_ADC_PollForConversion(&hadc1, 10); //等待转换完成,第二个参数表示超时时间,单位ms if(HAL_IS_BIT_SET(HAL_ADC_GetState(&hadc1), HAL_ADC_STATE_REG_EOC)) ADC_Value = HAL_ADC_GetValue(&hadc1);// 读取转换的 AD 值 ADC_Vol = ADC_Value*3.3/4096;// 转换为电压 float tem; tem=__HAL_ADC_CALC_TEMPERATURE(vdda,ADC_Value,ADC_RESOLUTION_12B);//转换温度 printf("ADC_Vol: %2.4f V Tem: %2.4f ℃\r\n", ADC_Vol,tem); //通过串口发送 HAL_Delay(500); } 8 h; ]/ L0 N6 [' V' O% m8 W8 @以上为 main 函数中外设初始化结束后的部分,首先对 ADC 进行校准,然后进入主循环,循环中开启 ADC 转换,等待转换完成后读取转换结果,然后将调用自带的温度转换函数将 ADC 采样值转换为温度,最后通过串口打印至 PC,每 500ms 进行一次测量。 ( N$ n! I5 p E+ h实验现象: 下载烧录后可以观察到上位机串口助手打印温度测量数据。 . ]% A, X* l5 g' v q/ q1 V![]() ▲ 实验现象 5、VABT 电压采集实验 CubeMX 配置如下,保存后生成对应的配置代码: : Z2 U3 [" E8 l/ t![]() ▲ CubeMX 进行 ADC 配置 本实验进行 VBAT 电压读取,基本配置与例 3.8.1 相同,需要注意采样时间需要给足,手册要求最小采样时间 12us,根据时钟频率进行换算。 核心代码: HAL_ADCEx_Calibration_Start(&hadc1,ADC_SINGLE_ENDED); //矫正 while (1) { HAL_ADC_Start(&hadc1); HAL_ADC_PollForConversion(&hadc1, 10); //等待转换完成,第二个参数表示超时时间,单位 ms if(HAL_IS_BIT_SET(HAL_ADC_GetState(&hadc1), HAL_ADC_STATE_REG_EOC)) ADC_Value = HAL_ADC_GetValue(&hadc1);// 读取转换的 AD 值 ADC_Vol = 3*ADC_Value*3.3f/4096;// 转换为电压 printf("VBAT: %2.4f V \r\n", ADC_Vol); //通过串口发送 HAL_Delay(500); } 以上为 main 函数中外设初始化结束后的部分,首先对 ADC 进行校准,然后进入主循环,循环中开启 ADC 转换,等待转换完成后读取转换结果,然后将结果转换为浮点数电压值,需要注意的是,VBAT 采样在内部进行了 1/3 分压,因此最终电压计算结果需要乘 3,最后通过串口打印至 PC,每 500ms 进行一次测量。 实验现象: 下载烧录后可以观察到上位机串口助手打印 ADC 测量数据。 ![]() ▲ 实验现象 6、内部基准电压采集实验 CubeMX 配置如下,保存后生成对应的配置代码: ![]() ▲ CubeMX 进行温度传感器 ADC 配置 + K& b4 z* d. M- K+ y, [本实验进行内部参考电压读取,基本配置与例 3.8.1 相同,需要注意采样时间需要给足,手册要求最小采样时间 4us,根据时钟频率进行换算,读取之后通过内部参考电压反算外部参考电压。 相关操作函数说明: __HAL_ADC_CALC_VREFANALOG_VOLTAGE(__VREFINT_ADC_DATA__,__ADC_RESOLUTION__) 功能:通过读取到的内部参考电压,反算实际参考电压; 参数 1:ADC 采样寄存器数据,注意是读取的原始数据; 参数 2:ADC 采样位数,可选 ADC_RESOLUTION_12B、ADC_RESOLUTION_10B、ADC_RESOLUTION_8B、ADC_RESOLUTION_6B; 返回:转换后的时间参考电压,单位 mv; 示例:VREF_MV =__HAL_ADC_CALC_VREFANALOG_VOLTAGE(ADC_Value,ADC_RESOLUTION_12B);//转换 VREF+ 核心代码: HAL_ADCEx_Calibration_Start(&hadc1,ADC_SINGLE_ENDED); //矫正 while (1) { HAL_ADC_Start(&hadc1); HAL_ADC_PollForConversion(&hadc1, 10); //等待转换完成,第二个参数表示超时时间,单位 ms if(HAL_IS_BIT_SET(HAL_ADC_GetState(&hadc1), HAL_ADC_STATE_REG_EOC)) ADC_Value = HAL_ADC_GetValue(&hadc1);// 读取转换的 AD 值 VREF_MV = __HAL_ADC_CALC_VREFANALOG_VOLTAGE(ADC_Value,ADC_RESOLUTION_12B);//转换 VREF+ printf("VREF+: %d mV \r\n", VREF_MV); //通过串口发送 HAL_Delay(500); } 以上为 main 函数中外设初始化结束后的部分,首先对 ADC 进行校准,然后进入主循环,循环中开启 ADC 转换,等待转换完成后读取转换结果,然后将调用自带的电压转换函数将内部参考电压 ADC 采样值转换为实际外部参考电压输入,最后通过串口打印至 PC,每500ms 进行一次测量。 实验现象: 下载烧录后可以观察到上位机串口助手打印外部参考电压测量数据。 ![]() ▲ 实验现象 7、定时器触发单通道 ADC 采样 CubeMX 配置如下,保存后生成对应的配置代码: ![]() ▲ CubeMX 进行 ADC 触发配置 ![]() ▲ CubeMX 进行定时器配置 ![]() ▲ CubeMX 进行中断配置 CubeMX 中的 ADC 基本配置单通道采样相同,这里需要开启 ADC1 的中断,并且修改转换触发源,原来的软件触发改为使用定时器时间进行触发,TIM1 配置周期为 10ms,即每 10ms触发一次 ADC 转换。 . [8 T$ y1 n0 t, d- O& k7 x3 q7 s3 g相关操作函数说明: HAL_StatusTypeDef HAL_ADC_Start_IT(ADC_HandleTypeDef *hadc) 功能:使能 ADC,以中断开启 ADC 规则组转换; 参数 1:ADC 句柄,根据实际需要填写; 返回:操作结果,HAL_OK,HAL_ERROR; 示例:HAL_ADC_Start_IT(&hadc1); //开启 ADC1 转换 注意:在 ADC 转换完成之后会触发中断,中断中读取采样数据 HAL_StatusTypeDef HAL_ADC_Stop_IT(ADC_HandleTypeDef *hadc) 功能:关闭 ADC,停止规则组转换,关闭转换结束中断; 参数 1:ADC 句柄,根据实际需要填写; 返回:操作结果,HAL_OK,HAL_ERRORT; 核心代码: HAL_ADCEx_Calibration_Start(&hadc1,ADC_SINGLE_ENDED); //矫正 HAL_ADC_Start_IT(&hadc1);//中断方式启动 ADC HAL_TIM_Base_Start(&htim1);//启动 TIM1 % H) \- O, u; f0 N" N以上为 main 函数中外设初始化结束后的部分,首先对 ADC 进行校准,然后中断方式开启ADC 转换,这里主要是要开启 ADC 并且使能中断,然后开启 TIM1,通过 TIM 触发 ADC进行转换。 ) Z- y4 i# s1 Z/ |7 N1 H! Tvoid HAL_ADC_ConvCpltCallback(ADC_HandleTypeDef *hadc) { if(hadc == &hadc1) { if(HAL_IS_BIT_SET(HAL_ADC_GetState(&hadc1), HAL_ADC_STATE_REG_EOC)) ADC_Value = HAL_ADC_GetValue(&hadc1);// 读取转换的 AD 值 ADC_Vol = ADC_Value*3.3/4096;// 转换为电压 printf("ADC_Vol: %2.4f\r\n", ADC_Vol); //通过串口发送 } } 0 Q' |4 d+ X! w x4 U+ K: E以上为 ADC 转换完成中断回调函数,该函数为 ADC 共用的,进入此函数首先要判断是哪个 ADC 转换完成了,然后读取相应 ADC 的数据寄存器,转换为浮点数电压,通过串口发送到上位机。 $ J9 K' @# c6 f% {* U实验现象: 下载烧录后可以观察到上位机串口助手打印 ADC 测量数据。 ![]() ▲ 实验现象 九、DAC实验 0 { h D2 I2 i* Z J. y0 x" @ r实验目的:掌握和熟悉 DAC 单路输出的软件触发和定时器触发配置方法,配合 DMA 输出波形。 1、DAC 软件触发输出实验 CubeMX 配置如下,保存后生成对应的配置代码: ![]() ▲ CubeMX 进行 DAC 输出配置 本实验进行软件触发 DAC 输出,开启 DAC1 的 OUT1 输出,使用外部输出引脚,使用普通模式,并且使能输出缓冲,将触发设置为软件触发。 相关操作函数说明: HAL_StatusTypeDef HAL_DAC_SetValue(DAC_HandleTypeDef *hdac, uint32_t Channel,uint32_t Alignment, uint32_t Data) 功能:设置 DAC 输出电压; 参数 1:DAC 句柄,根据需要填写; 参数 2:DAC 通道,可选 DAC_CHANNEL_1、DAC_CHANNEL_2; 参数 3:DAC 数据格式,可选 DAC_ALIGN_12B_R(12 位右对齐)、DAC_ALIGN_12B_L(12 位左对齐)、DAC_ALIGN_8B_R(8 位右对齐); 参数 4:要写入的电压数据; 返回:操作结果,HAL_OK 或 HAL_ERROR; 示例:HAL_DAC_SetValue(&hdac1, DAC_CHANNEL_1, DAC_ALIGN_12B_R,sinewave[temp_i]);// 设置输出值注意:此函数不会改变实际的 DAC 输出,如果想要修改生效,还需要使用下面的函数 ! f* r7 X+ m) b4 e" g2 ` HAL_StatusTypeDef HAL_DAC_Start(DAC_HandleTypeDef *hdac, uint32_t Channel) 功能:开启外部 DAC 电压转换; 参数 1:DAC 句柄,根据需要填写; 参数 2:DAC 通道,可选 DAC_CHANNEL_1、DAC_CHANNEL_2; 返回:操作结果,HAL_OK 或 HAL_ERROR; 示例:HAL_DAC_Start(&hdac1,DAC_CHANNEL_1);// 改变输出值 HAL_StatusTypeDef HAL_DAC_Stop(DAC_HandleTypeDef *hdac, uint32_t Channel) 功能:停止外部 DAC 电压转换; 参数 1:DAC 句柄,根据需要填写; 参数 2:DAC 通道,可选 DAC_CHANNEL_1、DAC_CHANNEL_2; 返回:操作结果,HAL_OK 或 HAL_ERROR; 4 E+ h& k0 y0 m/ {+ H: o0 l核心代码: while (1) { for(temp_i=0; temp_i<60; temp_i++) { HAL_DAC_SetValue(&hdac1, DAC_CHANNEL_1, DAC_ALIGN_12B_R, sinewave[temp_i]);// 设置输出值 HAL_DAC_Start(&hdac1,DAC_CHANNEL_1);// 改变输出值 HAL_Delay(1);// 延时一毫秒 } } 以上为 main 函数中外设初始化结束后的部分,主循环中根据正弦表切换 DAC 电压输出,1ms 进行一次切换,正选表一共 60 个点。 实验现象:下载烧录后可以观察到 PA4 输出一个正弦波,频率约为 8.333Hz。 " U6 H* m( ?( w$ ?, K: G![]() ▲ 实验现象 3 i. u1 c o+ u; \. E. U2、定时器触发 DMA 传输 DAC 输出实验 CubeMX 配置如下,保存后生成对应的配置代码: ![]() ▲ CubeMX 进行 DAC 基本配置 ![]() ▲ CubeMX 进行 DMA 配置 ![]() ▲ CubeMX 进行 TIM4 配置 4 h8 @- j' w7 D# p9 W) i0 e' y* ?本实验进行定时器触发 DAC 输出,开启 DAC1 的 OUT1 输出,使用外部输出引脚,使用普通模式,并且使能输出缓冲,将触发设置为 TIM4 触发,配置 DMA,使用循环模式,整字传输,配置 TIM4,设置定时器周期为 1ms。 相关操作函数说明: HAL_StatusTypeDef HAL_DAC_Start_DMA(DAC_HandleTypeDef *hdac, uint32_t Channel,const uint32_t *pData, uint32_t Length,uint32_t Alignment) 功能:通过 DMA 方式开始 DAC 转换; 参数 1:DAC 句柄,根据需要填写; 参数 2:DAC 通道,可选 DAC_CHANNEL_1、DAC_CHANNEL_2; 参数 3:要通过 DMA 发送的数据指针,一般为数据首地址; 参数 4:要通过 DMA 发送的数据长度;参数 5:发送数据格式,可选 DAC_ALIGN_12B_R(12 位右对齐)、DAC_ALIGN_12B_L(12 位左对齐)、DAC_ALIGN_8B_R(8 位右对齐); 返回:操作结果,HAL_OK 或 HAL_ERROR; 示例:HAL_DAC_Start_DMA(&hdac1, DAC_CHANNEL_1,(uint32_t *)dac_wave1,SAWTOOTH_NB_STEPS,DAC_ALIGN_12B_R) ;// DMA 方式设置输出值 5 w& z# Q2 l7 C- J2 i核心代码: //正弦表 uint32_t dac_wave1[80]={ 0x0826,0x08C6,0x0965,0x0A02,0x0A9C,0x0B31,0x0BC2,0x0C4C,0x0CD0,0x0D4C,0x0DC0,0x0E2B,0x0E8C,0x0EE2,0x0F2E,0x0F6E,0x0FA3,0x0FCC,0x0FE8,0x0FF8,0x0FFB,0x0FF1,0x0FDB,0x0FB9,0x0F8A,0x0F50,0x0F0A,0x0EB8,0x0E5D,0x0DF7,0x0D87,0x0D0F,0x0C8F,0x0C08,0x0B7A,0x0AE7,0x0A4F,0x09B4,0x0916,0x0876,0x07D5,0x0735,0x0696,0x05F9,0x055F,0x04CA,0x0439,0x03AF,0x032B,0x02AF,0x023B,0x01D0,0x016F,0x0119,0x00CD,0x008D,0x0058,0x002F,0x0013,0x0003,0x0000,0x000A,0x0020,0x0042,0x0071,0x00AB,0x00F1,0x0143,0x019E,0x0204,0x0274,0x02EC,0x036C,0x03F3,0x0481,0x0514,0x05AC,0x0647,0x06E5,0x0785}; //正弦表点数 #define SAWTOOTH_NB_STEPS 80 6 N. \) F! ~2 ^8 j+ ?2 m4 `3 n 以上为正弦表定义。 7 p! i* U' L2 r C q6 _, ~if (HAL_TIM_Base_Start(&htim4) != HAL_OK)//开启定时器 4 { Error_Handler(); } if (HAL_DAC_Start_DMA(&hdac1, DAC_CHANNEL_1,(uint32_t *)dac_wave1,SAWTOOTH_NB_STEPS,DAC_ALIGN_12B_R) != HAL_OK) //开始 DMA 传输 { Error_Handler(); } 1 c! ?- W$ f" U3 U! g* U以上为 main 函数中外设初始化结束后的部分,开启 TIM4 进行触发,以 DMA 方式开启DAC 转换输出。 实验现象: 下载烧录后可以观察到 PA4 输出一个正弦波,频率约为 12.5Hz。 ![]() ▲ 实验现象 $ |0 H# i5 k. Y8 m! s$ B3、定时器触发 DAC 输出噪声实验 8 i9 I' ^ f% x4 x7 ACubeMX 配置如下,保存后生成对应的配置代码: ![]() ▲ CubeMX 进行 DAC 输出配置 ![]() ▲ CubeMX 进行 TIM2 配置 本实验使用 TIM2 触发 DAC 进行输出,输出内容由 DAC 随机生成,产生噪声。 核心代码: HAL_DAC_Start(&hdac1,DAC_CHANNEL_1);//启动 DAC 输出 HAL_TIM_Base_Start(&htim2);//启动 TIM2 触发 DAC 以上为 main 函数中外设初始化结束后的部分,只需要开启 DAC 输出和定时器即可。 实验现象: 下载烧录后可以观察到 PA4 输出随机噪声。 ![]() ▲ 实验现象 ' w# F8 m/ s6 E* B. r如有侵权请联系删除 9 E/ [' [! K. i# O1 P% X, @# F转载自:AI电堂 |
STM32G系列RS485自动收发控制以及自适应波特率实战
【学习指南】基于STM32G474VET6 开发板实验经验分享(三)
【学习指南】基于STM32G474VET6 开发板基础实验经验分享一
【学习指南】基于STM32G474软件平台安装与使用教程
【学习指南】基于STM32G474VET6 开发板硬件资源解析
STM32 Explore | 基于STM32G474的STM32Cube生态系统线下培训
STM32固件库分享,超全系列整理
STM32G47x 双 Bank 模式下在线升级
基于STM32G473ZET6开发板设计经验分享
详细讲解STM32G4的软件工具和环境搭建