一、什么是PendSV PendSV是可悬起异常,如果我们把它配置最低优先级,那么如果同时有多个异常被触发,它会在其他异常执行完毕后再执行,而且任何异常都可以中断它。更详细的内容在《Cortex-M3 权威指南》里有介绍,下面我摘抄了一段。
OS 可以利用它“缓期执行”一个异常——直到其它重要的任务完成后才执行动 作。悬起 PendSV 的方法是:手工往 NVIC的 PendSV悬起寄存器中写 1。悬起后,如果优先级不够 高,则将缓期等待执行。 PendSV的典型使用场合是在上下文切换时(在不同任务之间切换)。例如,一个系统中有两个就绪的任务,上下文切换被触发的场合可以是:
1、执行一个系统调用
2、系统滴答定时器(SYSTICK)中断,(轮转调度中需要) 让我们举个简单的例子来辅助理解。假设有这么一个系统,里面有两个就绪的任务,并且通过SysTick异常启动上下文切换。但若在产生 SysTick 异常时正在响应一个中断,则 SysTick异常会抢占其 ISR。在这种情况下,OS是不能执行上下文切换的,否则将使中断请求被延迟,而且在真实系统中延迟时间还往往不可预知——任何有一丁点实时要求的系统都决不能容忍这 种事。因此,在 CM3 中也是严禁没商量——如果 OS 在某中断活跃时尝试切入线程模式,将触犯用法fault异常。 为解决此问题,早期的 OS 大多会检测当前是否有中断在活跃中,只有在无任何中断需要响应 时,才执行上下文切换(切换期间无法响应中断)。然而,这种方法的弊端在于,它可以把任务切 换动作拖延很久(因为如果抢占了 IRQ,则本次 SysTick在执行后不得作上下文切换,只能等待下 一次SysTick异常),尤其是当某中断源的频率和SysTick异常的频率比较接近时,会发生“共振”, 使上下文切换迟迟不能进行。现在好了,PendSV来完美解决这个问题了。PendSV异常会自动延迟上下文切换的请求,直到 其它的 ISR都完成了处理后才放行。为实现这个机制,需要把 PendSV编程为最低优先级的异常。如果 OS检测到某 IRQ正在活动并且被 SysTick抢占,它将悬起一个 PendSV异常,以便缓期执行 上下文切换。 使用 PendSV 控制上下文切换个中事件的流水账记录如下: 1. 任务 A呼叫 SVC来请求任务切换(例如,等待某些工作完成) 2. OS接收到请求,做好上下文切换的准备,并且悬起一个 PendSV异常。 3. 当 CPU退出 SVC后,它立即进入 PendSV,从而执行上下文切换。 4. 当 PendSV执行完毕后,将返回到任务 B,同时进入线程模式。 5. 发生了一个中断,并且中断服务程序开始执行 6. 在 ISR执行过程中,发生 SysTick异常,并且抢占了该 ISR。 7. OS执行必要的操作,然后悬起 PendSV异常以作好上下文切换的准备。 8. 当 SysTick退出后,回到先前被抢占的 ISR中,ISR继续执行 9. ISR执行完毕并退出后,PendSV服务例程开始执行,并且在里面执行上下文切换 10. 当 PendSV执行完毕后,回到任务 A,同时系统再次进入线程模式。
我们在uCOS的PendSV的处理代码中可以看到: - OS_CPU_PendSVHandler
- CPSID I ; 关中断
- ;保存上文
- ;.......................
- ;切换下文
- CPSIE I ;开中断
- BX LR ;异常返回
复制代码
它在异常一开始就关闭了中端,结束时开启中断,中间的代码为临界区代码,即不可被中断的操作。PendSV异常是任务切换的堆栈部分的核心,由他来完成上下文切换。PendSV的操作也很简单,主要有设置优先级和触发异常两部分: - NVIC_INT_CTRL EQU 0xE000ED04 ; 中断控制寄存器
- NVIC_SYSPRI14 EQU 0xE000ED22 ; 系统优先级寄存器(优先级14).
- NVIC_PENDSV_PRI EQU 0xFF ; PendSV优先级(最低). NVIC_PENDSVSET EQU 0x10000000 ; PendSV触发值
- ; 设置PendSV的异常中断优先级
- LDR R0, =NVIC_SYSPRI14
- LDR R1, =NVIC_PENDSV_PRI
- STRB R1, [R0] ; 触发PendSV异常
- LDR R0, =NVIC_INT_CTRL
- LDR R1, =NVIC_PENDSVSET
- STR R1, [R0]
复制代码
二、堆栈操作 Cortex M4有两个堆栈寄存器,主堆栈指针(MSP)与进程堆栈指针(PSP),而且任一时刻只能使用其中的一个。MSP为复位后缺省使用的堆栈指针,异常永远使用MSP,如果手动开启PSP,那么线程使用PSP,否则也使用MSP。怎么开启PSP? - MSR PSP, R0 ; Load PSP with new process SP
- ORR LR, LR, #0x04 ; Ensure exception return uses process stack
复制代码
很容易就看出来了,置LR的位2为1,那么异常返回后,线程使用PSP。 写OS首先要将内存分配搞明白,单片机内存本来就很小,所以我们当然要斤斤计较一下。在OS运行之前,我们首先要初始化MSP和PSP, - EXTERN OS_CPU_ExceptStkBase
- ;PSP清零,作为首次上下文切换的标志
- MOVS R0, #0
- MSR PSP, R0
- ;将MSP设为我们为其分配的内存地址
- LDR R0, =OS_CPU_ExceptStkBase
- LDR R1, [R0]
- MSR MSP, R1
复制代码
然后就是PendSV上下文切换中的堆栈操作了,如果不使用FPU,则进入异常自动压栈xPSR,PC,LR,R12,R0-R3,我们还要把R4-R11入栈。如果开启了FPU,自动压栈的寄存器还有S0-S15,还需吧S16-S31压栈。 - MRS R0, PSP
- SUBS R0, R0, #0x20 ;压入R4-R11
- STM R0, {R4-R11}
- LDR R1, =Cur_TCB_Point ;当前任务的指针
- LDR R1, [R1]
- STR R0, [R1] ; 更新任务堆栈指针
复制代码
出栈类似,但要注意顺序 - LDR R1, =TCB_Point ;要切换的任务指针
- LDR R2, [R1]
- LDR R0, [R2] ; R0为要切换的任务堆栈地址
-
- LDM R0, {R4-R11} ; 弹出R4-R11
- ADDS R0, R0, #0x20
- MSR PSP, R0 ;更新PSP
复制代码
三、OS实战 新建os_port.asm文件,内容如下: - NVIC_INT_CTRL EQU 0xE000ED04 ; Interrupt control state register.
- NVIC_SYSPRI14 EQU 0xE000ED22 ; System priority register (priority 14).
- NVIC_PENDSV_PRI EQU 0xFF ; PendSV priority value (lowest).
- NVIC_PENDSVSET EQU 0x10000000 ; Value to trigger PendSV exception.
- RSEG CODE:CODE:NOROOT(2)
- THUMB
-
- EXTERN g_OS_CPU_ExceptStkBase
-
- EXTERN g_OS_Tcb_CurP
- EXTERN g_OS_Tcb_HighRdyP
- PUBLIC OSStart_Asm
- PUBLIC PendSV_Handler
- PUBLIC OSCtxSw
- OSCtxSw
- LDR R0, =NVIC_INT_CTRL
- LDR R1, =NVIC_PENDSVSET
- STR R1, [R0]
- BX LR ; Enable interrupts at processor level
- OSStart_Asm
- LDR R0, =NVIC_SYSPRI14 ; Set the PendSV exception priority
- LDR R1, =NVIC_PENDSV_PRI
- STRB R1, [R0]
- MOVS R0, #0 ; Set the PSP to 0 for initial context switch call
- MSR PSP, R0
- LDR R0, =g_OS_CPU_ExceptStkBase ; Initialize the MSP to the OS_CPU_ExceptStkBase
- LDR R1, [R0]
- MSR MSP, R1
- LDR R0, =NVIC_INT_CTRL ; Trigger the PendSV exception (causes context switch)
- LDR R1, =NVIC_PENDSVSET
- STR R1, [R0]
- CPSIE I ; Enable interrupts at processor level
- OSStartHang
- B OSStartHang ; Should never get here
-
-
- PendSV_Handler
- CPSID I ; Prevent interruption during context switch
- MRS R0, PSP ; PSP is process stack pointer
- CBZ R0, OS_CPU_PendSVHandler_nosave ; Skip register save the first time
-
- SUBS R0, R0, #0x20 ; Save remaining regs r4-11 on process stack
- STM R0, {R4-R11}
- LDR R1, =g_OS_Tcb_CurP ; OSTCBCur->OSTCBStkPtr = SP;
- LDR R1, [R1]
- STR R0, [R1] ; R0 is SP of process being switched out
- ; At this point, entire context of process has been saved
- OS_CPU_PendSVHandler_nosave
- LDR R0, =g_OS_Tcb_CurP ; OSTCBCur = OSTCBHighRdy;
- LDR R1, =g_OS_Tcb_HighRdyP
- LDR R2, [R1]
- STR R2, [R0]
- LDR R0, [R2] ; R0 is new process SP; SP = OSTCBHighRdy->OSTCBStkPtr;
-
- LDM R0, {R4-R11} ; Restore r4-11 from new process stack
- ADDS R0, R0, #0x20
-
- MSR PSP, R0 ; Load PSP with new process SP
- ORR LR, LR, #0x04 ; Ensure exception return uses process stack
-
- CPSIE I
- BX LR ; Exception return will restore remaining context
-
- END
复制代码
main.c内容如下:
编译下载并调试:
在此处设置断点 此时寄存器的值,可以看到R4-R11正是我们给的值,单步运行几次,可以看到进入了我们的任务task_1或task_2,任务里打印信息,然后调用Task_Switch进行切换,OSCtxSw触发PendSV异常。
IO输出如下:
至此我们成功实现了使用PenSV进行两个任务的互相切换。之后,我们使用使用SysTick实现比较完整的多任务切换。
|