
目前手上有个项目,用的是STM32F205,在使用TIM2+ADC+DMA模式的时候,发现采样率并不是很正确。 目的是检测待采信号的1K和2K的谐波,因此拟采用8KHz采样率采样512个点,做512的FFT,单点约耗时64ms,4096个点应该耗时在262S左右,但是在DEBUG的时候,发现48S左右就全部完成了;将TIM2的PERIOD改为9999999时,DEBUG可以看到ADC值为1S一次,有没有大神知道问题在哪? 代码如下: /* USER CODE BEGIN Header */ /** ****************************************************************************** * @file : main.c * @brief : Main program body ****************************************************************************** * @attention * * Copyright (c) 2022 STMicroelectronics. * All rights reserved. * * This software is licensed under terms that can be found in the LICENSE file * in the root directory of this software component. * If no LICENSE file comes with this software, it is provided AS-IS. * ****************************************************************************** */ /* USER CODE END Header */ /* Includes ------------------------------------------------------------------*/ #include "main.h" /* Private includes ----------------------------------------------------------*/ /* USER CODE BEGIN Includes */ #include "arm_math.h" //添加头文件 #include "arm_const_structs.h" #define CLK_H HAL_GPIO_WritePin(GPIOA, GPIO_PIN_8, GPIO_PIN_SET); #define CLK_L HAL_GPIO_WritePin(GPIOA, GPIO_PIN_8, GPIO_PIN_RESET); #define CS_H HAL_GPIO_WritePin(GPIOA, GPIO_PIN_6, GPIO_PIN_SET); #define CS_L HAL_GPIO_WritePin(GPIOA, GPIO_PIN_6, GPIO_PIN_RESET); #define UD_H HAL_GPIO_WritePin(GPIOA, GPIO_PIN_7, GPIO_PIN_SET); #define UD_L HAL_GPIO_WritePin(GPIOA, GPIO_PIN_7, GPIO_PIN_RESET); #define FFT_LENGTH 512 //FFT长度 #define SAMPLE_FREQ 250000 //采样频率 float fft_inputbuf[FFT_LENGTH*2] = {0}; //FFT输入输出数组,此数组为arm_cfft_radix4_f32的输入输出数组,前一个元素为实部,后一个为虚部,每两个元素代表一个点. float fft_outputbuf[FFT_LENGTH] = {0}; //arm_cmplx_mag_f32()幅度输出数组 arm_cfft_radix4_instance_f32 scfft; //fft变换的初始化参数 __IO uint8_t AdcConvEnd = 0; /* USER CODE END Includes */ /* Private typedef -----------------------------------------------------------*/ /* USER CODE BEGIN PTD */ #define sine_avg 3 //uint16_t Sine12bit[72] = { // 124, 135, 146, 156, 167, 177, 186, 195, 204, 212, 219, 226, // // 232, 237, 241, 244, 246, 248, 248, 248, 246, 244, 241, 237, // // 232, 226, 219, 212, 204, 195, 186, 177, 167, 156, 146, 135, 124, // // 113, 103, 92, 82, 72, 62, 53, 44, 36, 29, 22, 17, // // 12, 7, 4, 2, 0, 0, 0, 2, 4, 7, 12, 17, // // 22, 29, 36, 44, 53, 62, 72, 82, 92, 103, 113 //};//200mv ----72points uint16_t Sine12bit[72] = { 124, 135, 146, 156, 167, 177, 186, 195, 204, 212, 219, 226, 232, 237, 241, 244, 246, 248, 248, 248, 246, 244, 241, 237, 232, 226, 219, 212, 204, 195, 186, 177, 167, 156, 146, 135, 124, 113, 103, 92, 82, 72, 62, 53, 44, 36, 29, 22, 17, 12, 7, 4, 2, 0, 0, 0, 2, 4, 7, 12, 17, 22, 29, 36, 44, 53, 62, 72, 82, 92, 103, 113 };//30mv ----72points uint16_t Sinetosend[72] = {0}; uint16_t ADC_VALUE[512][2] = {0}; //ADC_VALUE[][0]-------PIN 8//ADC_VALUE[][1]-----------PIN10 uint16_t bias_vol, bias_num, bias_last; uint16_t x, y, firstpoint, secondpoint; float bias_back_firstwave[4096] = {0}; float bias_back_secondwave[4096] = {0}; float max, min, ratio; float double_sum_first, double_sum_second; /* USER CODE END PTD */ /* Private define ------------------------------------------------------------*/ /* USER CODE BEGIN PD */ /* USER CODE END PD */ /* Private macro -------------------------------------------------------------*/ /* USER CODE BEGIN PM */ /* USER CODE END PM */ /* Private variables ---------------------------------------------------------*/ ADC_HandleTypeDef hadc1; DMA_HandleTypeDef hdma_adc1; DAC_HandleTypeDef hdac; DMA_HandleTypeDef hdma_dac2; TIM_HandleTypeDef htim2; TIM_HandleTypeDef htim6; /* USER CODE BEGIN PV */ /* USER CODE END PV */ /* Private function prototypes -----------------------------------------------*/ void SystemClock_Config(void); static void MX_GPIO_Init(void); static void MX_DMA_Init(void); static void MX_ADC1_Init(void); static void MX_DAC_Init(void); static void MX_TIM6_Init(void); static void MX_TIM2_Init(void); /* USER CODE BEGIN PFP */ void RES_DW(uint8_t dat); void RES_UP(uint8_t dat); void RES_STOR(void); /* USER CODE END PFP */ /* Private user code ---------------------------------------------------------*/ /* USER CODE BEGIN 0 */ /* USER CODE END 0 */ /** * @brief The application entry point. * @retval int */ int main(void) { /* USER CODE BEGIN 1 */ /* USER CODE END 1 */ /* MCU Configuration--------------------------------------------------------*/ /* Reset of all peripherals, Initializes the Flash interface and the Systick. */ HAL_Init(); /* USER CODE BEGIN Init */ /* USER CODE END Init */ /* Configure the system clock */ SystemClock_Config(); /* USER CODE BEGIN SysInit */ CLK_H; CS_H; UD_H; /* USER CODE END SysInit */ /* Initialize all configured peripherals */ MX_GPIO_Init(); MX_DMA_Init(); MX_ADC1_Init(); MX_DAC_Init(); MX_TIM6_Init(); MX_TIM2_Init(); /* USER CODE BEGIN 2 */ uint16_t m; RES_DW(60); for(m=0; m<72; m++) { Sinetosend[m] = Sine12bit[m] / sine_avg; } HAL_TIM_Base_Start(&htim6); HAL_DAC_Start_DMA(&hdac,DAC_CHANNEL_2,(uint32_t *)Sinetosend,72,DAC_ALIGN_12B_R); // RES_DW(3); /* USER CODE END 2 */ /* Infinite loop */ /* USER CODE BEGIN WHILE */ while (1) { /* USER CODE END WHILE */ HAL_GPIO_WritePin(GPIOB, GPIO_PIN_8, GPIO_PIN_SET); HAL_Delay(500); HAL_GPIO_WritePin(GPIOB, GPIO_PIN_8, GPIO_PIN_RESET); HAL_Delay(500); for(bias_vol = 0; bias_vol < 4095; bias_vol++) { HAL_DAC_Start(&hdac,DAC_CHANNEL_1); HAL_DAC_SetValue(&hdac, DAC_CHANNEL_1, DAC_ALIGN_12B_R, bias_vol); HAL_TIM_Base_Start(&htim2); HAL_ADC_Start_DMA(&hadc1, (uint32_t *)ADC_VALUE, 1024); HAL_Delay(64); while(!AdcConvEnd); uint16_t i = 0; for(i=0;i<FFT_LENGTH;i++)//生成信号序列 { fft_inputbuf[2*i]= ADC_VALUE[i][0] * 3.3/4096; //生成实部 fft_inputbuf[2*i+1]=0;//虚部全部为0 } arm_cfft_f32(&arm_cfft_sR_f32_len512, fft_inputbuf, 0, 1); arm_cmplx_mag_f32(fft_inputbuf, fft_outputbuf, FFT_LENGTH); fft_outputbuf[0] /= 512; bias_back_firstwave[bias_vol] = fft_outputbuf[64] / 256; bias_back_secondwave[bias_vol] = fft_outputbuf[128] / 256; HAL_TIM_Base_Stop(&htim2); } max = 0; min = 65535; for(x=0; x < 4095; x++) { if(bias_back_firstwave[x] > max) { max = bias_back_firstwave[x]; firstpoint = x; } } for(y=0; y < 4095; y++) { if((bias_back_secondwave[y] < min) && (bias_back_secondwave[y] > 0)) { min = bias_back_secondwave[y]; secondpoint = y; } } HAL_DAC_SetValue(&hdac, DAC_CHANNEL_1, DAC_ALIGN_12B_R, secondpoint); HAL_Delay(120000); /* USER CODE BEGIN 3 */ } /* USER CODE END 3 */ } /** * @brief System Clock Configuration * @retval None */ void SystemClock_Config(void) { RCC_OscInitTypeDef RCC_OscInitStruct = {0}; RCC_ClkInitTypeDef RCC_ClkInitStruct = {0}; /** Initializes the RCC Oscillators according to the specified parameters * in the RCC_OscInitTypeDef structure. */ RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSE; RCC_OscInitStruct.HSEState = RCC_HSE_ON; RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON; RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE; RCC_OscInitStruct.PLL.PLLM = 25; RCC_OscInitStruct.PLL.PLLN = 240; RCC_OscInitStruct.PLL.PLLP = RCC_PLLP_DIV2; RCC_OscInitStruct.PLL.PLLQ = 4; if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK) { Error_Handler(); } /** Initializes the CPU, AHB and APB buses clocks */ RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK |RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2; RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK; RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1; RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV4; RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV2; if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_3) != HAL_OK) { Error_Handler(); } /** Enables the Clock Security System */ HAL_RCC_EnableCSS(); } /** * @brief ADC1 Initialization Function * @param None * @retval None */ static void MX_ADC1_Init(void) { /* USER CODE BEGIN ADC1_Init 0 */ /* USER CODE END ADC1_Init 0 */ ADC_ChannelConfTypeDef sConfig = {0}; /* USER CODE BEGIN ADC1_Init 1 */ /* USER CODE END ADC1_Init 1 */ /** Configure the global features of the ADC (Clock, Resolution, Data Alignment and number of conversion) */ hadc1.Instance = ADC1; hadc1.Init.ClockPrescaler = ADC_CLOCK_SYNC_PCLK_DIV2; hadc1.Init.Resolution = ADC_RESOLUTION_12B; hadc1.Init.ScanConvMode = ENABLE; hadc1.Init.ContinuousConvMode = DISABLE; hadc1.Init.DiscontinuousConvMode = ENABLE; hadc1.Init.ExternalTrigConvEdge = ADC_EXTERNALTRIGCONVEDGE_RISING; hadc1.Init.ExternalTrigConv = ADC_EXTERNALTRIGCONV_T2_TRGO; hadc1.Init.DataAlign = ADC_DATAALIGN_RIGHT; hadc1.Init.NbrOfConversion = 2; hadc1.Init.DMAContinuousRequests = ENABLE; hadc1.Init.EOCSelection = ADC_EOC_SINGLE_CONV; if (HAL_ADC_Init(&hadc1) != HAL_OK) { Error_Handler(); } /** Configure for the selected ADC regular channel its corresponding rank in the sequencer and its sample time. */ sConfig.Channel = ADC_CHANNEL_12; sConfig.Rank = 1; sConfig.SamplingTime = ADC_SAMPLETIME_15CYCLES; if (HAL_ADC_ConfigChannel(&hadc1, &sConfig) != HAL_OK) { Error_Handler(); } /** Configure for the selected ADC regular channel its corresponding rank in the sequencer and its sample time. */ sConfig.Channel = ADC_CHANNEL_10; sConfig.Rank = 2; if (HAL_ADC_ConfigChannel(&hadc1, &sConfig) != HAL_OK) { Error_Handler(); } /* USER CODE BEGIN ADC1_Init 2 */ /* USER CODE END ADC1_Init 2 */ } /** * @brief DAC Initialization Function * @param None * @retval None */ static void MX_DAC_Init(void) { /* USER CODE BEGIN DAC_Init 0 */ /* USER CODE END DAC_Init 0 */ DAC_ChannelConfTypeDef sConfig = {0}; /* USER CODE BEGIN DAC_Init 1 */ /* USER CODE END DAC_Init 1 */ /** DAC Initialization */ hdac.Instance = DAC; if (HAL_DAC_Init(&hdac) != HAL_OK) { Error_Handler(); } /** DAC channel OUT1 config */ sConfig.DAC_Trigger = DAC_TRIGGER_NONE; sConfig.DAC_OutputBuffer = DAC_OUTPUTBUFFER_ENABLE; if (HAL_DAC_ConfigChannel(&hdac, &sConfig, DAC_CHANNEL_1) != HAL_OK) { Error_Handler(); } /** DAC channel OUT2 config */ sConfig.DAC_Trigger = DAC_TRIGGER_T6_TRGO; sConfig.DAC_OutputBuffer = DAC_OUTPUTBUFFER_DISABLE; if (HAL_DAC_ConfigChannel(&hdac, &sConfig, DAC_CHANNEL_2) != HAL_OK) { Error_Handler(); } /* USER CODE BEGIN DAC_Init 2 */ /* USER CODE END DAC_Init 2 */ } /** * @brief TIM2 Initialization Function * @param None * @retval None */ static void MX_TIM2_Init(void) { /* USER CODE BEGIN TIM2_Init 0 */ /* USER CODE END TIM2_Init 0 */ TIM_ClockConfigTypeDef sClockSourceConfig = {0}; TIM_MasterConfigTypeDef sMasterConfig = {0}; /* USER CODE BEGIN TIM2_Init 1 */ /* USER CODE END TIM2_Init 1 */ htim2.Instance = TIM2; htim2.Init.Prescaler = 5; htim2.Init.CounterMode = TIM_COUNTERMODE_UP; htim2.Init.Period = 1249; htim2.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1; htim2.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_ENABLE; if (HAL_TIM_Base_Init(&htim2) != HAL_OK) { Error_Handler(); } sClockSourceConfig.ClockSource = TIM_CLOCKSOURCE_INTERNAL; if (HAL_TIM_ConfigClockSource(&htim2, &sClockSourceConfig) != HAL_OK) { Error_Handler(); } sMasterConfig.MasterOutputTrigger = TIM_TRGO_UPDATE; sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE; if (HAL_TIMEx_MasterConfigSynchronization(&htim2, &sMasterConfig) != HAL_OK) { Error_Handler(); } /* USER CODE BEGIN TIM2_Init 2 */ /* USER CODE END TIM2_Init 2 */ } /** * @brief TIM6 Initialization Function * @param None * @retval None */ static void MX_TIM6_Init(void) { /* USER CODE BEGIN TIM6_Init 0 */ /* USER CODE END TIM6_Init 0 */ TIM_MasterConfigTypeDef sMasterConfig = {0}; /* USER CODE BEGIN TIM6_Init 1 */ /* USER CODE END TIM6_Init 1 */ htim6.Instance = TIM6; htim6.Init.Prescaler = 0; htim6.Init.CounterMode = TIM_COUNTERMODE_UP; htim6.Init.Period = 833; htim6.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_ENABLE; if (HAL_TIM_Base_Init(&htim6) != HAL_OK) { Error_Handler(); } sMasterConfig.MasterOutputTrigger = TIM_TRGO_UPDATE; sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE; if (HAL_TIMEx_MasterConfigSynchronization(&htim6, &sMasterConfig) != HAL_OK) { Error_Handler(); } /* USER CODE BEGIN TIM6_Init 2 */ /* USER CODE END TIM6_Init 2 */ } /** * Enable DMA controller clock */ static void MX_DMA_Init(void) { /* DMA controller clock enable */ __HAL_RCC_DMA2_CLK_ENABLE(); __HAL_RCC_DMA1_CLK_ENABLE(); /* DMA interrupt init */ /* DMA1_Stream6_IRQn interrupt configuration */ HAL_NVIC_SetPriority(DMA1_Stream6_IRQn, 0, 0); HAL_NVIC_EnableIRQ(DMA1_Stream6_IRQn); /* DMA2_Stream0_IRQn interrupt configuration */ HAL_NVIC_SetPriority(DMA2_Stream0_IRQn, 0, 0); HAL_NVIC_EnableIRQ(DMA2_Stream0_IRQn); } /** * @brief GPIO Initialization Function * @param None * @retval None */ static void MX_GPIO_Init(void) { GPIO_InitTypeDef GPIO_InitStruct = {0}; /* GPIO Ports Clock Enable */ __HAL_RCC_GPIOH_CLK_ENABLE(); __HAL_RCC_GPIOC_CLK_ENABLE(); __HAL_RCC_GPIOA_CLK_ENABLE(); __HAL_RCC_GPIOB_CLK_ENABLE(); /*Configure GPIO pin Output Level */ HAL_GPIO_WritePin(GPIOA, GPIO_PIN_6|GPIO_PIN_7|GPIO_PIN_8, GPIO_PIN_SET); /*Configure GPIO pin Output Level */ HAL_GPIO_WritePin(GPIOB, GPIO_PIN_8, GPIO_PIN_SET); /*Configure GPIO pin Output Level */ HAL_GPIO_WritePin(GPIOB, GPIO_PIN_9, GPIO_PIN_RESET); /*Configure GPIO pins : PA6 PA8 */ GPIO_InitStruct.Pin = GPIO_PIN_6|GPIO_PIN_8; GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP; GPIO_InitStruct.Pull = GPIO_PULLUP; GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_HIGH; HAL_GPIO_Init(GPIOA, &GPIO_InitStruct); /*Configure GPIO pin : PA7 */ GPIO_InitStruct.Pin = GPIO_PIN_7; GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP; GPIO_InitStruct.Pull = GPIO_PULLUP; GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_VERY_HIGH; HAL_GPIO_Init(GPIOA, &GPIO_InitStruct); /*Configure GPIO pins : PB8 PB9 */ GPIO_InitStruct.Pin = GPIO_PIN_8|GPIO_PIN_9; GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP; GPIO_InitStruct.Pull = GPIO_PULLUP; GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_HIGH; HAL_GPIO_Init(GPIOB, &GPIO_InitStruct); } /* USER CODE BEGIN 4 */ void RES_UP(uint8_t dat) { uint8_t S0; UD_H; HAL_Delay(5); CS_L; HAL_Delay(5); for(S0=dat;S0>0;S0--) { CLK_L; HAL_Delay(5); CLK_H; HAL_Delay(5); } CS_H; } void RES_DW(uint8_t dat) { uint8_t S1; UD_L; HAL_Delay(5); CS_L; HAL_Delay(5); for(S1=dat;S1>0;S1--) { CLK_L; HAL_Delay(5); CLK_H; HAL_Delay(5); } CS_H; } void RES_STOR(void) { CS_L; HAL_Delay(5); CLK_H; UD_L; HAL_Delay(5); UD_H; HAL_Delay(5); UD_L; HAL_Delay(5); CS_H; } /* USER CODE END 4 */ /** * @brief This function is executed in case of error occurrence. * @retval None */ void Error_Handler(void) { /* USER CODE BEGIN Error_Handler_Debug */ /* User can add his own implementation to report the HAL error return state */ __disable_irq(); while (1) { } /* USER CODE END Error_Handler_Debug */ } #ifdef USE_FULL_ASSERT /** * @brief Reports the name of the source file and the source line number * where the assert_param error has occurred. * @param file: pointer to the source file name * @param line: assert_param error line source number * @retval None */ void assert_failed(uint8_t *file, uint32_t line) { /* USER CODE BEGIN 6 */ /* User can add his own implementation to report the file name and line number, ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */ /* USER CODE END 6 */ } #endif /* USE_FULL_ASSERT */ |
通过变量AdcConvEnd等待数据采集结束,它在哪里被置1,哪里被置0,也就是说,AdcConvEnd的赋值是否与采集事件起始与结束绑定?再有就是定时器tim2计时是否设置正确 |
定时器使用DMA突发传输功能时,传入指针从常量数组改为变量数组后,传输功能异常。测试官方用例一样,是何原因?
STM32MP135D的TIM2使用ETR作为外部时钟时,无法使用PE15作为输入
分享一个PWM+DMA的BUG
STM32的TIM触发SPI的DMA发送使用NSS时MSSI的问题
使用STM32捕获PWM时同时捕获2个通道时会出现捕获的频率值不准确的问题
HRTIM 变频控制输出的第一个周期频率异常
PWM+DMA求助
怎么在不用中断的情况下,测量霍尔编码器的数据
STM32G070RET6,中断优先级配置没有效果
STM32G474 利用高精度HRTIM怎么捕获外部波形计算波形频率,想用STM32Cube配置工程代码,网上查了很多资料,没有看到这个用法。希望大神指导一下。