前言
- 使用stm32cubemx配置外设,Matlab搭建FOC开环模型,并导出代码用于FOC。对导出的FOC加以修改,已完成了对于FOC的开环控制。
CUBEMX
- 配置cubemx,这里选择芯片型号时,直接选择了开发板只有的配置。
TIM 配置
1、首先最重要的就是配置TIM定时器啦~
2、这里选择了三路互补的PWM来驱动电机的6路MOS信号
3、第四路PWM用于触发ADC采样
4、计数模式选择了中心对齐模式,由于使用svpwm调制,设置为该模式可以减少开关频率
5、这里系统时钟为48MHz,因此设置一个10k的PWM信号。由于中心对称,所以需要除2
6、用于死区的配置
7、这里也是因为中心对称,CCR等于ARR时会触发一次,这里RCR为1可以把计数到ARR时忽略
8、将触发事件配置为第四路PWM信号触发,当产生触发事件后告诉ADC进行采样
9、这里默认三陆互补PWM为mode1
10、PWM4设置为mode2
11、NVIC设置事件更新中断
ADC
1、选择ADC
2、启用两路ADC用于测量母线电流。根据KCL定律,已知两路便可得到第三路
3,4、使能扫描和DMA,需要先配置下面的操作
5、配置触发方式,为定时器PWM触发
UART
这里配置了串口一,结果发现板子默认是串口二。这里大家可以根据自己的板子修改,我是去掉了两个连接串口2的电阻转而连接在串口1上。
Clion
FOC驱动代码
// foc.c
#include "foc.h"
ExtU rtU;
ExtY rtY;
/* Model step function */
void foc_step(void) {
int sector = 0;
float T1;
float rtb_ualpha;
float rtb_ubeta;
T1 = sinf(rtU.theta);
rtb_ubeta = cosf(rtU.theta);
rtb_ualpha = (float) rtU.ud * rtb_ubeta - (float) rtU.uq * T1;
rtb_ubeta = (float) rtU.ud * T1 + (float) rtU.uq * rtb_ubeta;
// 由 U_alpha 和 U_beta 计算出对于扇区
if (rtb_ubeta > 0.0F) { sector = 1; }
if ((1.73205078F * rtb_ualpha - rtb_ubeta) / 2.0F > 0.0F) { sector += 2; }
if ((-1.73205078F * rtb_ualpha - rtb_ubeta) / 2.0F > 0.0F) { sector += 4; }
switch (sector) {
case 1:
T1 = (-1.5F * rtb_ualpha + 0.866025388F * rtb_ubeta) * (rtU.Tpwm / rtU.udc);
rtb_ualpha = (1.5F * rtb_ualpha + 0.866025388F * rtb_ubeta) * (rtU.Tpwm / rtU.udc);
break;
case 2:
T1 = (1.5F * rtb_ualpha + 0.866025388F * rtb_ubeta) * (rtU.Tpwm / rtU.udc);
rtb_ualpha = -(1.73205078F * rtb_ubeta * rtU.Tpwm / rtU.udc);
break;
case 3:
T1 = -((-1.5F * rtb_ualpha + 0.866025388F * rtb_ubeta) * (rtU.Tpwm / rtU.udc));
rtb_ualpha = 1.73205078F * rtb_ubeta * rtU.Tpwm / rtU.udc;
break;
case 4:
T1 = -(1.73205078F * rtb_ubeta * rtU.Tpwm / rtU.udc);
rtb_ualpha = (-1.5F * rtb_ualpha + 0.866025388F * rtb_ubeta) * (rtU.Tpwm / rtU.udc);
break;
case 5:
T1 = 1.73205078F * rtb_ubeta * rtU.Tpwm / rtU.udc;
rtb_ualpha = -((1.5F * rtb_ualpha + 0.866025388F * rtb_ubeta) * (rtU.Tpwm / rtU.udc));
break;
default:
T1 = -((1.5F * rtb_ualpha + 0.866025388F * rtb_ubeta) * (rtU.Tpwm / rtU.udc));
rtb_ualpha = -((-1.5F * rtb_ualpha + 0.866025388F * rtb_ubeta) * (rtU.Tpwm /
rtU.udc));
break;
}
rtb_ubeta = T1 + rtb_ualpha;
if (rtb_ubeta > rtU.Tpwm) {
T1 /= rtb_ubeta;
rtb_ualpha /= T1 + rtb_ualpha;
}
rtb_ubeta = (rtU.Tpwm - (T1 + rtb_ualpha)) / 4.0F;
T1 = T1 / 2.0F + rtb_ubeta;
switch (sector) {
case 1:
rtY.Tcmp1 = T1;
rtY.Tcmp2 = rtb_ubeta;
rtY.Tcmp3 = rtb_ualpha / 2.0F + T1;
break;
case 2:
rtY.Tcmp1 = rtb_ubeta;
rtY.Tcmp2 = rtb_ualpha / 2.0F + T1;
rtY.Tcmp3 = T1;
break;
case 3:
rtY.Tcmp1 = rtb_ubeta;
rtY.Tcmp2 = T1;
rtY.Tcmp3 = rtb_ualpha / 2.0F + T1;
break;
case 4:
rtY.Tcmp1 = rtb_ualpha / 2.0F + T1;
rtY.Tcmp2 = T1;
rtY.Tcmp3 = rtb_ubeta;
break;
case 5:
rtY.Tcmp1 = rtb_ualpha / 2.0F + T1;
rtY.Tcmp2 = rtb_ubeta;
rtY.Tcmp3 = T1;
break;
case 6:
rtY.Tcmp1 = T1;
rtY.Tcmp2 = rtb_ualpha / 2.0F + T1;
rtY.Tcmp3 = rtb_ubeta;
break;
}
rtY.sector = (float) sector;
}
// foc.h
#ifndef RTW_HEADER_foc_h_
#define RTW_HEADER_foc_h_
#include <math.h>
typedef struct {
double ud,uq;
float theta, udc,Tpwm;
} ExtU;
typedef struct {
float Tcmp1,Tcmp2,Tcmp3;
float sector;
} ExtY;
extern ExtU rtU;
extern ExtY rtY;
extern void foc_step(void);
#endif /* RTW_HEADER_foc_h_ */
/* USER CODE BEGIN Header */
/**
******************************************************************************
* @file : main.c
* @brief : Main program body
******************************************************************************
* @attention
*
* Copyright (c) 2024 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
*/
/* USER CODE END Header */
/* Includes ------------------------------------------------------------------*/
#include "main.h"
#include "adc.h"
#include "dma.h"
#include "tim.h"
#include "usart.h"
#include "gpio.h"
/* Private includes ----------------------------------------------------------*/
/* USER CODE BEGIN Includes */
#include "foc.h"
/* USER CODE END Includes */
/* Private typedef -----------------------------------------------------------*/
/* USER CODE BEGIN PTD */
/* USER CODE END PTD */
/* Private define ------------------------------------------------------------*/
/* USER CODE BEGIN PD */
/* USER CODE END PD */
/* Private macro -------------------------------------------------------------*/
/* USER CODE BEGIN PM */
/* USER CODE END PM */
/* Private variables ---------------------------------------------------------*/
/* USER CODE BEGIN PV */
#define PI 3.1415926
uint16_t adc1_val_buf1[4] = {0};
extern ExtU rtU;
extern ExtY rtY;
extern DMA_HandleTypeDef hdma_adc1;
uint16_t a,b,c,d,e,f;
/* USER CODE END PV */
/* Private function prototypes -----------------------------------------------*/
void SystemClock_Config(void);
/* USER CODE BEGIN PFP */
void dmaAdcCallback(struct __DMA_HandleTypeDef *hdma);
/* USER CODE END PFP */
/* Private user code ---------------------------------------------------------*/
/* USER CODE BEGIN 0 */
/* USER CODE END 0 */
/**
* @brief The application entry point.
* @retval int
*/
int main(void)
{
/* USER CODE BEGIN 1 */
/* USER CODE END 1 */
/* MCU Configuration--------------------------------------------------------*/
/* Reset of all peripherals, Initializes the Flash interface and the Systick. */
HAL_Init();
/* USER CODE BEGIN Init */
rtU.ud = 0;
rtU.uq = 2;
rtU.Tpwm = 4800;
rtU.udc = 12;
/* USER CODE END Init */
/* Configure the system clock */
SystemClock_Config();
/* USER CODE BEGIN SysInit */
/* USER CODE END SysInit */
/* Initialize all configured peripherals */
MX_GPIO_Init();
MX_DMA_Init();
MX_ADC1_Init();
MX_USART1_UART_Init();
MX_TIM1_Init();
/* USER CODE BEGIN 2 */
HAL_ADC_Start_DMA(&hadc1,(uint32_t*)&adc1_val_buf1,2);
hdma_adc1.XferCpltCallback = dmaAdcCallback;
HAL_TIM_PWM_Start(&htim1, TIM_CHANNEL_1);
HAL_TIM_PWM_Start(&htim1, TIM_CHANNEL_2);
HAL_TIM_PWM_Start(&htim1, TIM_CHANNEL_3);
HAL_TIM_PWM_Start(&htim1, TIM_CHANNEL_4);
HAL_TIMEx_PWMN_Start(&htim1, TIM_CHANNEL_1);
HAL_TIMEx_PWMN_Start(&htim1, TIM_CHANNEL_2);
HAL_TIMEx_PWMN_Start(&htim1, TIM_CHANNEL_3);
/* USER CODE END 2 */
/* Infinite loop */
/* USER CODE BEGIN WHILE */
while (1)
{
/* USER CODE END WHILE */
/* USER CODE BEGIN 3 */
}
/* USER CODE END 3 */
}
/**
* @brief System Clock Configuration
* @retval None
*/
void SystemClock_Config(void)
{
RCC_OscInitTypeDef RCC_OscInitStruct = {0};
RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};
/** Initializes the RCC Oscillators according to the specified parameters
* in the RCC_OscInitTypeDef structure.
*/
RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSI;
RCC_OscInitStruct.HSIState = RCC_HSI_ON;
RCC_OscInitStruct.HSIDiv = RCC_HSI_DIV1;
RCC_OscInitStruct.HSICalibrationValue = RCC_HSICALIBRATION_DEFAULT;
if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
{
Error_Handler();
}
/** Initializes the CPU, AHB and APB buses clocks
*/
RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK
|RCC_CLOCKTYPE_PCLK1;
RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_HSI;
RCC_ClkInitStruct.SYSCLKDivider = RCC_SYSCLK_DIV1;
RCC_ClkInitStruct.AHBCLKDivider = RCC_HCLK_DIV1;
RCC_ClkInitStruct.APB1CLKDivider = RCC_APB1_DIV1;
if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_1) != HAL_OK)
{
Error_Handler();
}
}
/* USER CODE BEGIN 4 */
void dmaAdcCallback(struct __DMA_HandleTypeDef *hdma) {
rtU.theta += 0.01;
if (rtU.theta >= 2.0f * PI) {
rtU.theta -= 2.0f * PI;
}
foc_step();
htim1.Instance->CCR1 = (uint16_t) rtY.Tcmp3;
htim1.Instance->CCR2 = (uint16_t) rtY.Tcmp2;
htim1.Instance->CCR3 = (uint16_t) rtY.Tcmp1;
a=htim1.Instance->CCR1;
b=htim1.Instance->CCR2;
c=htim1.Instance->CCR3;
d=htim1.Instance->CCMR1;
e=htim1.Instance->CCMR2;
f=htim1.Instance->CCMR3;
}
/* USER CODE END 4 */
/**
* @brief This function is executed in case of error occurrence.
* @retval None
*/
void Error_Handler(void)
{
/* USER CODE BEGIN Error_Handler_Debug */
/* User can add his own implementation to report the HAL error return state */
__disable_irq();
while (1)
{
}
/* USER CODE END Error_Handler_Debug */
}
#ifdef USE_FULL_ASSERT
/**
* @brief Reports the name of the source file and the source line number
* where the assert_param error has occurred.
* @param file: pointer to the source file name
* @param line: assert_param error line source number
* @retval None
*/
void assert_failed(uint8_t *file, uint32_t line)
{
/* USER CODE BEGIN 6 */
/* User can add his own implementation to report the file name and line number,
ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */
/* USER CODE END 6 */
}
#endif /* USE_FULL_ASSERT */
点击编译,烧录。
此时,电机开始旋转咯 ^^~
查看DEBUG
使用STM32CubeMonitor软件。
双击打开
点击编辑
添加路径和变量
点击更新,完成
完成部署后运行
后序
不知道是不是Cmake配置的问题,32kflah写到这就基本快写完了。加个串口,内存就完全不够用了。。。
你用什么IDE?有没有把编译器的代码优化选上
用的clion,cubemx导出的是cubeide。实测下来使用老版本的cubemx输出sw4stm32可以解决这个问题。估计是cmake配置的问题了
我直接用STM32CUBEIDE,编译时根本没有压缩,要设置一下。
您好,我添加了 add_compile_options(-Os) 后,仍然占用了很大部分的flash,STM32CUBEIDE占用要77%,Clion要84%