
USB CDC类入门培训 ) z% j2 G4 B3 \( N+ X4 w" Z1 前言 本文节选自2017年度USB CDC类培训内容的整理,主要目的是以方便些没有到现场参加培训的碟粉们可以参阅学习。本文力求从理论到实践,尽量给读者一个整体了解USB CDC类的窗口。当然,阅读此文,还是需要基本的USB知识,这个请读者自行预备。6 M; R0 P6 ^- B- f+ L' J4 Q" N , h+ f7 f# Y& ^; Y* M" B3 e 2 USB CDC类基础理论知识介绍9 Z, P% g3 z: k 7 x& Y* I% `8 i- l% h, K! G1 H9 G4 w 2.1 USB CDC类、USB2.0标准与PSTN之间的关系/ O8 V; L# P5 D8 ` I* n; o) q CDC(Communication Device Class)类是USB2.0标准下的一个子类,定义了通信相关设备的抽象集合。它与USB2.0标准以及其下的子类的相互关系如下图所示:1 P3 c1 G7 l8 r$ \, g* |+ K ![]() 图 1 USB2.0标准、CDC、PSTN之间的关系' n8 d6 R% |7 b, }- ^ G0 ?8 g 如上图,USB2.0标准下定义了很多子类,有音频类,CDC类,HID,打印,大容量存储类,HUB,智能卡等等,这些在urb.org官网上有具体的定义,这里我们主要讲的是通信类CDC,CDC类下面,根据具体的应用场合,又有一些子类,这里我们主要讲的是PSTN(Public Switched Telephone Network)。从PSTN官方标准文档来看,PSTN子类是一个与电信相关的子类,而这里,我们只是将它作为一个普通的通信设备使用,并没有使用到它的一些电话特性。 2.2 从一个具体的CDC类通信数据说起 ![]() 图 2 一个具体的CDC类设备通信数据 如上图,USB CDC类的通信部分主要包含三部分:枚举过程、虚拟串口操作和数据通信。其中虚拟串口操作部分并不一定强制需要,因为若跳过这些虚拟串口的操作,实际上USB依然是可以通信的,这也就是为什么上图中,在操作虚拟串口之前会有两条数据通信的数据。之所以会有虚拟串口操作,主要是我们通常使用PC作为Host端,在PC端使用一个串口工具来与其进行通信,PC端的对应驱动将其虚拟成一个普通串口,这样一来,可以方便PC端软件通过操作串口的方式来与其进行通信,但实际上,Host端与Device端物理上是通过USB总线来进行通信的,与串口没有关系,这一虚拟化过程,起决定性作用的是对应驱动,包含如何将每一条具体的虚拟串口操作对应到实际上的USB操作。这里需要注意地是,Host端与Device端的USB通信速率并不受所谓的串口波特率影响,它就是标准的USB2.0全速(12Mbps)速度,实际速率取决于总线的实际使用率、驱动访问USB外设有效速率(两边)以及外部环境对通信本身造成的干扰率等等因素组成。5 I" _- \% C1 v, u 4 U0 Q! J, {4 i0 Y6 D$ [) ~ 2.3 CDC类设备枚举过程 CDC类设备与其他标准USB设备枚举过程的并没有什么特殊的地方。在设备描述符内可以使用DeviceClass=0x00, SubClass=0x00, Protocol=0x00 表示此类信息在接口描述符内给出;或者也可以使用0x02,0x00,0x00;来表明该设备为CDC类设备。或者使用0xef, 0x02,0x01表示当前为复合设备。 ) S% D/ C* ~. K* e I CDC类设备在枚举过程中最主要的信息存储在配置描述符内:3 D9 h9 o! h8 \6 B8 n0 A, x5 V% Z ![]() 图 3 USB CDC类配置描述符的结构/ Z& G% t1 X0 [ . ~, {3 G5 C3 c 如上图所示,CDC类的配置描述符一般包含两个接口(Interface 0),一个控制接口,另外一个是数据接口(Interface 1), 除此之外,还有一个虚线指向的IAD(Interface Association Description),这个表示这个是不是可选的,得根据实际情况来确定其是否真实存在。 [9 X: P9 Q) p6 z0 _) W5 q. Z ) d( N$ H' A$ r$ h o% H& U6 w 2.3 1 控制接口$ E$ `( { J* H" k. ` 控制接口下包含类描述符合一个端点(ie:0x82),这个端点(中断传输模式)为异步通知消息的端点,当设备端需要向Host端发送异步消息时,可以通错此端点来发送,但平时主机端都是通过端点0来向设备端发送控制消息的,比如那些虚拟串口的操作指令等等。" n5 D# v) k& m) I; h$ d 除这异步通知端点外,控制接口下还包含CDC类相关描述符,这其中就包含Header描述符,Call Management描述符,ACM描述符以及Union描述符。这些功能描述符整合在一起用来描述此USB设备的一些功能特性,比如AT指令支持情况,ACM模型下的指令集支持情况,以及还有哪些接口与此接口一起对应Host端的一个功能(驱动)。) S! c q$ }$ N& G |; x) U h' @7 b : C1 v: d, a5 U& [& c* p 在具体配置描述符内的控制接口内,功能描述符紧跟在接口描述符后,最后才是端点描述符。& c; c% M1 `! r& V5 M , q, p0 |+ o5 k5 L) E* x7 M ● 控制接口 ![]() 图 4 控制接口描述符- ]2 J/ \- k) b/ \# M& S 控制接口主要用来做设备管理和电话管理(可选),设备管理涉及到请求(request)和通知(notification),端点0一般用做请求,一般用来控制和配置设备的运行状态,而非0端点(0x82)一般用作异步事件通知,设备端通过此端点向主机端发送设备内部的一些事件,比如串口状态变化事件,电话状态改变等等。 ( R8 H. J& B% F- L! k; Z 这里使用到ACM模型,后续将讲到这个模型,并且这里指明使用到V250版本的AT指令,这些指令是与电话相关的,但在我们这里讲的CDC通信实际上并不需要使用这些与电话相关的指令,它只是简单通信而已,这里指出AT指令也没有关系,只是实际不用它而已。, v' P) t/ E7 i5 U" |" d; V2 h7 { . v* m5 f0 D+ B& n7 x8 z 如上图,bNumEndpoints表示此接口下包含的端点数,这里为1个,即那个异步通知端点。bInterfaceSubClass为0x02,ACM通信模型,bInterfaceProtocol表示AT指令集的版本,虽然这里举例为V2.50,但实际上并没有使用到任何AT指令,因此它放 4 y7 V: t) ~! S- y& z ● Header功能描述符 ![]() 图 5 Header功能描述符1 D* i# s$ Y1 J* }! l% k $ K, t6 l/ Z5 N+ ^/ g d9 M6 H Header功能描述符表示功能描述符的开始,其他紧跟的内容就是此设备的功能描述符的内容。bcdCDC表示的是CDC的版本。" X: t+ T1 u0 a , E, {& |2 V4 o# Z% I ●ACM功能描述符5 x" {( ~/ `6 W/ [5 J ![]() 图 6 ACM功能描述符 + N2 X& k* h/ G4 L. @ ACM(Abstract Control Model),即抽象控制模型,PSTN下,除了ACM模型还有还有DLM(Direct Line Mode), TCM(Telephone Control Model)。 PSTN定义了三种模型 ![]() • DLM模型下,USB设备直接将模拟信号转化为数字信号,并放到USB上传输,数据接口直接使用Audio类传输音频数据,控制接口传输的也都是些比较原始的指令,比如脉宽设置,发送脉宽等等;" \* Q+ [+ r; a • ACM模型则可以很好的支持AT V250指令集,数据接口可以使用Audio类或CDC DATA,控制接口传输的也是比较抽象的高层指令,比如设置、获取波特率,设置获取与通信相关的参数等等,而AT指令可以通过控制接口或者数据接口,这个在控制接口下的功能描述符Call Management Descriptor中指明。1 f( [6 y! ]0 ]' `6 w1 q8 v$ d • TCM是指在物理上存在多个连接,可以将接口0和接口1分别对应到不同的物理连接上。 此外,不同的通信模型对应的指令集合(控制指令)也是不同的,而上图中bmCapliblities为位图,内部bit0~bit3分别表示4类控制指令集在此设备的支持情况。* D" J7 s) P" I ![]() 图 7 ACM模型下的控制指令集 如上表,为ACM模型下的指令集,但不是说,这些个指令就一定会在ACM模型下存在,此USB设备是不是支持此某个控制指令,还得看bmCapliblities这个参数具体对应位是否使能。 在实际的STM32 USB协议栈中,针对于CDC类,使用LineStateCoding,GetLineCoding,SetControlState类指令,用来读取,设置串口波特率以及串口的打开与关闭,这个具体的映射实现是通过主机端的驱动来实现;从设备端来看,当设备端收到这些来自主机端操作串口的控制指令时,这些指令具体怎么执行完全取决于设备端,也就说,所有的这些操作,比如设置波特率为115200,对于设备端来说这个只是个通过SetLineCoding指令传过来的一个参数而已,具体怎么处理这个参数,取决于设备端应用程序具体怎么处理这个参数,这个有用户来处理,这个115200波特率与USB本身的波特率12Mbps(全速)是没有关系的。 # t$ U( X. K/ B" y6 ? ● Call Management功能描述符3 ?' n% |4 o0 {, F# ~" c% l ![]() 图 8 Call Management功能描述符 Call Management描述的就是电话相关的东西,AT指令集的支持情况。但在这里,我们并没有用到任何与电话相关的指令,因此bmCapabilities下的位图各个位都是为0:Bit0:是否支持电话相关的指令(AT指令集);Bit1:电话相关的指令(AT指令集)是否经过Comm. Class Interface; bDataInterface表示如有电话时,电话数据内容对应的接口号。 ● Union功能描述符 ![]() 图 9 Union功能描述符, V- m( H- T8 E$ o Union描述符就是用来告诉主机端,哪些接口是联合在一起的,对应着一个功能,这个功能需要主机装载对应的驱动来实现,因此,功能与驱动是一对一的关系。这里bControlInterface值为0,则表示接口0为控制接口,bSubBoardinateInterface0值为1,表示接口1为控制接口0的下级接口,即数据接口。在CDC标准中,控制接口是必须的,而数据接口是可选的,因此,数据接口为控制接口的附属。( D0 ^$ I& H7 u' n + R- Y6 D9 B; h" P' i5 B 2.3.2 数据接口 ![]() 图 10 数据接口 数据接口比较简单,就是数据通信的,用到两个端点IN/OUT 0x81/0x01,为块传输类型。9 z. {- s2 y3 J9 O 2.3.3 IAD(Interface Association Descriptor)- j6 o! n" V/ w( ]+ B/ j ![]() 图 11 IAD描述符3 ?1 f9 Y7 b/ O1 v8 x/ K4 W& a) { 8 W; Z$ s: d2 @6 N! p" V7 | USB刚出来的时候,一开始默认是一个接口对应一个功能,而一个功能对应着主机端的一个驱动,这在当时是OK的,但是后来,人们发现,需要多个接口对应一个功能的时候,比如这个CDC,除了数据接口外还需要控制接口,这在当时是没有这方面的统一标准,于是就出了Union来表示多个接口对应一个功能的情况。再后来,USB标准协会又增加了IAD。 IAD与Union类似,Union是旧版本下实现多个接口对应一个功能的功能描述符,而IAD是USB协会后来针对多个接口对应一个功能的情况而扩展的,旧的主机可能只支持Union方式,但IAD并不会影响旧版本主机对设备的识别,因为旧版本主机会通过Union来识别哪些接口是联合在一起的,对于IAD则跳过忽略;而新版主机则可以通过IAD来识别,跳过忽略老的Union,因此两者可以完美兼容,互不影响。因而主机端可以精确地装载对应的驱动。 ' c& Y t5 T5 d5 a% c5 D# Z# t9 U( k IAD只用在设备描述符中只用了device class code,并且指明了使用IAD来识别设备,比如bDeviceClass: Miscellaneous (0xef), bDeviceSubClass: Common (0x02), bDeviceProtocol: Interface Association Descriptor (0x01)就是一个例子; 0x02,0x00,0x00是另外一个例子。 , N7 a' ^# R! e+ n) k( [ 如上图,bFirstInterface值为0,表示第一个接口个接口0,默认为控制接口;bInterfaceCount值为2,标志此功能总共存在2个接口,那么第二个接口就是接口1,因为USB2.0 IAD ECN补充标准规定,这里提到的接口号必须是连续的,也就是说,接口0为第一个控制接口,那么接口1则为数据接口。( [: k0 a5 h. L P4 }( C- I4 ], g 下面我们来个具体的IAD例子: ![]() 图 12 IAD存在时的设备描述符 ![]() 图 13 IAD, u" N. N# y" C- d; E 如上图所示,一般IAD存在的情况下,在设备描述符中DeviceClass等三个参数不再都为0x00,图12中为0xef,0x02,0x01,这个表示是复合设备,此时,可以使用IAD来定义多个接口联合起来对应一个USB驱动。从IAD中可以看出,bFunctionClass参数就定义了此IAD表示的设备为CDC类设备,ACM模型。就这样,通过IAD描述符,实现了与Union功能描述符相同的功能。 7 Q4 I0 j8 }5 D% h+ V1 H 2.3.4 ACM模型 之前我们已经在控制接口中的功能描述符中已有对ACM(Abstract Control Mode)模型的简介,也有提到过,在PSTN中,除了ACM模式,还有TCM,DLM模式。这三种模式,不同的模式下包含的控制指令集是不尽相同的,有部分控制指令可能同时存在两个或三个模式下,除了控制指令,还有异步通知消息,这个在三个不同模式下也是不相同的。$ m+ F+ ? G, \$ a3 H( X% P ![]() 图 14 ACM模式下的控制指令集+ i0 U, o4 e9 ? ![]() 图 15 ACM模式下的异步通知消息' l! @( U2 u- a1 c# G, w ![]() 图 16 DLM模式下的控制指令集6 B3 B6 t- {" X1 \, ? ![]() 图 17 DLM模式下的异步通知消息 ![]() 图 18 TCM模式下的控制指令集 ![]() 图 19 TCM模式下的异步通知消息 由图14~19可知,当设备选择了某个模型后,其控制指令集和异步通知消息也就得符合此模式下的对应集合,否则则不符合标准。这里我们主要是使用到ACM模式,因此,此ACM模式下的有Host端发现Device端的控制指令和有Device端向Host端发送的异步通知消息都是固定的那么几条指令或消息,但并不是说,只要是ACM模式,那么就表示此模式下的所有控制指令和异步通知消息都必须支持。控制指令在设备端的控制接口描述符中的ACM功能描述符中的bCapabilities字段有按' v" l2 o% q: A; d4 z 位定义ACM模式下的控制指令的支持情况,而异步通知消息,则完全看device端的应用情况是否需要,并没有在任何描述符中指出那些消息是否支持。 在ST给出的CDC例程中,主要是使用到了SetLineCoding指令来设置和修改虚拟串口的波特率,使用GetLineCoding来获取当前波特率,使用SetControlLineState来打开或关闭串口,这种操作是在Host端CDC驱动来具体映射实现的,至于Device端收到这些个控制指令该怎么处理,就是另外一回事了,Device端也可以完全不做任何处理,有CubeMx自动生成的CDC类代码就是这样,对接收到的任何控制指令到没有做任何处理,当然,如果需要的话,则按应用的需要来处理,这个完全取决于用户。# t$ q9 l# D$ r6 e4 b ![]() 图 20 控制指令操作虚拟串口 ![]() 图 21 一个ACM模式下的异步通知消息例子 3 CDC类软件框架介绍% H6 S) A, _% s* [; j4 z7 e : d' j/ E, W. L8 [6 r$ n& { 3.1 CDC软件框架简介6 g; m) I7 P% h& d) h0 B; e ![]() 图 22 CDC类软件框架 8 E, {- B* b: }" e$ L4 p 如上图所示,黄色USB Device Core部分为USB设备库文件,属于中间件,它为USB协议栈的核心源文件,一般不需要修改:* G @5 K& ]8 Z4 E2 i) w ● USB Device Core中,Log/debug为打印/调试开关; ● core为USB设备核心;7 i* p! m. G# a5 w1 u ● USB request中定义了枚举过程中各种标准请求的处理; ● I/O request为底层针对USB通信接口的封装。; b! s2 `# _1 }7 L 黄色USB Device Class部分为USB类文件,也属于中间件,USB设备库,目前ST DEMO中支持的类有HID, Customer HID, CDC, MSC, DFU, Audio, ST提供了这些类的源码框架,其他的Class或者是复合设备需要自己根据实际需求情况进行扩展或定制。如果用户需求只是需要一个标准类,比如CDC通信,那么最好就使用现成的代码,不需要做任何修改就可以实现这个CDC类通信的功能。 蓝色USB Device HAL Driver为HAL库部分,是对USB外设接口的封装,属于底层驱动,不需要修改,它分为PCD和LL Driver,PCD处于LL Driver之上。 洋红色USB Device Configuration为USB配置封装,位于USB底层HAL层驱动与中间件USB协议栈之间,一方面向上层(USB设备库)提供各种操作调用接口,另一方面,向底层USB驱动提供各种回调接口。正是由于它的存在,使得USB协议栈(USB设备库)与底层硬件完全分离,从而使USB设备库具有更加兼容所有STM32的通用性。USB Device Configuration为开放给用户的源文件,用户可以根据自己的某些特殊需要进行修改,也可以使用默认的源文件,假如没有任何特殊要求的话,我们使用默认即可。 Application为应用层,USB Device Class有可能将自己对应该的操作接口封装在一个操作数据结构中,由应用来具体实现这些操作,在系统初始化时,由应用将已经定义好的操作接口注册到对应的USB类中,比如usbd_cdc_if, 就这样,使得应用层的应用代码与属于中间件层的USB协议栈分离。同时,USB协议栈会将一些字符串描述符放到APP中,当USB初始化时将这些已经定义好的字符串通过指针初始化到USB协议栈中,以便后续需要时获取。 / m1 c$ Y `( ~: p 0 P! _9 |* W( A% ?! s5 _ 3.2 工程源码文件与软件框架的对应关系 0 {+ e J: Q9 O! |7 |) I: @0 n ![]() 图23 CDC工程中源码与软件框架的对应关系 5 ], i2 K) R6 P 3.3 USBD内核与USBD_CDC的关系 3.1节中,我们已经提到过ST官方Cube库中提供的官方USB协议栈,主要是包含了USBD内核与USB各种类。USBD内核一般是固定的,用户一般不需要修改,但USBD类,如果用户需要修改或者扩展,比如复合设备或者用户自定义设备,还有就是,ST目前官方提供的USB设备类的DEMO程序并没有囊括所有USB类,因此,若用户需要实现这些官方提供DEMO之外的USB类时,则用户需要根据自己的需要来定制化自己的USB类,那么又该如何开始呢?' n1 I0 ]; S& u' [4 a 我们已经知道,ST提供的USB协议栈中已经有USBD内核,且这个内核源文件一般是不需要修改的,那么这里我们需要自定义这么一个USB类,那么我们首先得知道,这个我们需要自定义的USB类是如何与USBD内核打交道的? USB协议栈将所有USB类都抽象成一个数据结构:USBD_ClassTypeDef,其定义如下所示: ![]() ![]() 这个结构体是一个抽象类,定义了一些虚拟函数,比如初始化,反初始化,类请求指令处理函数,端点0发送完成,端点0接收处理,数据发送完成,数据接收处理,SOF中断处理,同步传输发送未完成,同步传输接收未完成处理等等;用户在实现自己具体的USB类的时候需要将它实例化,USBD_ClassTypeDef结构体是USBD内核提供给外部定义一个USB设备类的窗口,而USB类文件(如usbd_cdc.c)实际就是实现这个结构体具体实例化的过程。最后将这个具体实例化的对象注册到USBD内核的同时, USBD内核与USBD类也进行了关联。# v' ?& }( c) E2 G3 M/ `' X; _3 h ![]() 图 24 USBD核与CDC类的关系 7 t0 e1 h9 `/ n ...... ...... & e; F/ p4 c+ n# R3 z, v9 t4 I 由于帖子过长,更多详细信息下方文档中的PDF及代码!+ }) _! k1 k( }$ r! Q 4 a- \7 q( ^* k6 ~; m 9 @! d: _3 `$ n # w7 M5 ?' D% d: K; m2 a 文档下载* o9 [& J* y u( T& t 9 ]# c# I/ O! S. u 更多实战经验 |
牛逼。 |
![]() |
破总牛逼 |
牛逼,写的非常详细 |
初级入门中,上面没看明白!!!保存下来。 |
签到签到 |
看不懂额% ~- k! S5 \* g! G |
太牛逼。。 |
您好!我想问下,如果在基于CDC类ACM上开发组合设备,就是基于一个设备上配置多个接口设备功能,即CDC_ACM+Mass Storage这样的有问题吗? |
好资源啊 学习! |
厉害 |
讲解有深度。。。。。。。。。3ks |
楼主有没有原培训资料的附件啊,正常培训资料里有个 CDC_training.tdc 的USB 报文 |
MARK![]() |
最全USB HID开发资料,悉心整理一个月,亲自测试
实战经验 | 选择USBX模块生成USB CDC ACM无PD的项目
STM32 USB HID键盘例程
刘氓兔的杂谈【001】-片上USB 高速PHY
【经验分享】在进行 USB CDC 类开发时,无法发送 64整数倍的数据
【源码】STLINK-V3MINI 高速USB仿真器,成功改刷【高速CMSIS-DAP】
在线直播|无需编写任何代码即可在STM32上实现USB-C Power Delivery
STM32 USB CDC 虚拟多串口
圈圈发布USB图书第二版有感,以及分享一些我学习USB过程...
USB Audio设计与实现