简述
IIC(Inter-Integrated Circuit)其实是IICBus简称,它是一种串行通信总线,使用多主从架构,在STM32开发中经常见到。
使用面向对象的编程思想封装IIC驱动,将IIC的属性和操作封装成一个库,在需要创建一个IIC设备时只需要实例化一个IIC对象即可,本文是基于STM32和HAL库做进一步封装的。
底层驱动方法不重要,封装的思想很重要。在完成对IIC驱动的封装之后借助继承特性实现AT24C64存储器的驱动开发,仍使用面向对象的思想封装AT24C64驱动。
IIC驱动面向对象封装
iic.h头文件主要是类模板的定义,具体如下:- //定义IIC类
- typedef struct IIC_Type
- {
- //属性
- GPIO_TypeDef *GPIOx_SCL; //GPIO_SCL所属的GPIO组(如:GPIOA)
- GPIO_TypeDef *GPIOx_SDA; //GPIO_SDA所属的GPIO组(如:GPIOA)
- uint32_t GPIO_SCL; //GPIO_SCL的IO引脚(如:GPIO_PIN_0)
- uint32_t GPIO_SDA; //GPIO_SDA的IO引脚(如:GPIO_PIN_0)
- //操作
- void (*IIC_Init)(const struct IIC_Type*); //IIC_Init
- void (*IIC_Start)(const struct IIC_Type*); //IIC_Start
- void (*IIC_Stop)(const struct IIC_Type*); //IIC_Stop
- uint8_t (*IIC_Wait_Ack)(const struct IIC_Type*); //IIC_Wait_ack,返回wait失败或是成功
- void (*IIC_Ack)(const struct IIC_Type*); //IIC_Ack,IIC发送ACK信号
- void (*IIC_NAck)(const struct IIC_Type*); //IIC_NAck,IIC发送NACK信号
- void (*IIC_Send_Byte)(const struct IIC_Type*,uint8_t); //IIC_Send_Byte,入口参数为要发送的字节
- uint8_t (*IIC_Read_Byte)(const struct IIC_Type*,uint8_t); //IIC_Send_Byte,入口参数为是否要发送ACK信号
- void (*delay_us)(uint32_t); //us延时
- }IIC_TypeDef;
复制代码
iic.c源文件主要是类模板具体操作函数的实现,具体如下:
- //设置SDA为输入模式
- static void SDA_IN(const struct IIC_Type* IIC_Type_t)
- {
- uint8_t io_num = 0; //定义io Num号
- switch(IIC_Type_t->GPIO_SDA)
- {
- case GPIO_PIN_0:
- io_num = 0;
- break;
- case GPIO_PIN_1:
- io_num = 1;
- break;
- case GPIO_PIN_2:
- io_num = 2;
- break;
- case GPIO_PIN_3:
- io_num = 3;
- break;
- case GPIO_PIN_4:
- io_num = 4;
- break;
- case GPIO_PIN_5:
- io_num = 5;
- break;
- case GPIO_PIN_6:
- io_num = 6;
- break;
- case GPIO_PIN_7:
- io_num = 7;
- break;
- case GPIO_PIN_8:
- io_num = 8;
- break;
- case GPIO_PIN_9:
- io_num = 9;
- break;
- case GPIO_PIN_10:
- io_num = 10;
- break;
- case GPIO_PIN_11:
- io_num = 11;
- break;
- case GPIO_PIN_12:
- io_num = 12;
- break;
- case GPIO_PIN_13:
- io_num = 13;
- break;
- case GPIO_PIN_14:
- io_num = 14;
- break;
- case GPIO_PIN_15:
- io_num = 15;
- break;
- }
- IIC_Type_t->GPIOx_SDA->MODER&=~(3<<(io_num*2)); //将GPIOx_SDA->GPIO_SDA清零
- IIC_Type_t->GPIOx_SDA->MODER|=0<<(io_num*2); //将GPIOx_SDA->GPIO_SDA设置为输入模式
- }
- //设置SDA为输出模式
- static void SDA_OUT(const struct IIC_Type* IIC_Type_t)
- {
- uint8_t io_num = 0; //定义io Num号
- switch(IIC_Type_t->GPIO_SDA)
- {
- case GPIO_PIN_0:
- io_num = 0;
- break;
- case GPIO_PIN_1:
- io_num = 1;
- break;
- case GPIO_PIN_2:
- io_num = 2;
- break;
- case GPIO_PIN_3:
- io_num = 3;
- break;
- case GPIO_PIN_4:
- io_num = 4;
- break;
- case GPIO_PIN_5:
- io_num = 5;
- break;
- case GPIO_PIN_6:
- io_num = 6;
- break;
- case GPIO_PIN_7:
- io_num = 7;
- break;
- case GPIO_PIN_8:
- io_num = 8;
- break;
- case GPIO_PIN_9:
- io_num = 9;
- break;
- case GPIO_PIN_10:
- io_num = 10;
- break;
- case GPIO_PIN_11:
- io_num = 11;
- break;
- case GPIO_PIN_12:
- io_num = 12;
- break;
- case GPIO_PIN_13:
- io_num = 13;
- break;
- case GPIO_PIN_14:
- io_num = 14;
- break;
- case GPIO_PIN_15:
- io_num = 15;
- break;
- }
- IIC_Type_t->GPIOx_SDA->MODER&=~(3<<(io_num*2)); //将GPIOx_SDA->GPIO_SDA清零
- IIC_Type_t->GPIOx_SDA->MODER|=1<<(io_num*2); //将GPIOx_SDA->GPIO_SDA设置为输出模式
- }
- //设置SCL电平
- static void IIC_SCL(const struct IIC_Type* IIC_Type_t,int n)
- {
- if(n == 1)
- {
- HAL_GPIO_WritePin(IIC_Type_t->GPIOx_SCL,IIC_Type_t->GPIO_SCL,GPIO_PIN_SET); //设置SCL为高电平
- }
- else{
- HAL_GPIO_WritePin(IIC_Type_t->GPIOx_SCL,IIC_Type_t->GPIO_SCL,GPIO_PIN_RESET); //设置SCL为低电平
- }
- }
- //设置SDA电平
- static void IIC_SDA(const struct IIC_Type* IIC_Type_t,int n)
- {
- if(n == 1)
- {
- HAL_GPIO_WritePin(IIC_Type_t->GPIOx_SDA,IIC_Type_t->GPIO_SDA,GPIO_PIN_SET); //设置SDA为高电平
- }
- else{
- HAL_GPIO_WritePin(IIC_Type_t->GPIOx_SDA,IIC_Type_t->GPIO_SDA,GPIO_PIN_RESET); //设置SDA为低电平
- }
- }
- //读取SDA电平
- static uint8_t READ_SDA(const struct IIC_Type* IIC_Type_t)
- {
- return HAL_GPIO_ReadPin(IIC_Type_t->GPIOx_SDA,IIC_Type_t->GPIO_SDA); //读取SDA电平
- }
- //IIC初始化
- static void IIC_Init_t(const struct IIC_Type* IIC_Type_t)
- {
- GPIO_InitTypeDef GPIO_Initure;
- //根据GPIO组初始化GPIO时钟
- if(IIC_Type_t->GPIOx_SCL == GPIOA || IIC_Type_t->GPIOx_SDA == GPIOA)
- {
- __HAL_RCC_GPIOA_CLK_ENABLE(); //使能GPIOA时钟
- }
- if(IIC_Type_t->GPIOx_SCL == GPIOB || IIC_Type_t->GPIOx_SDA == GPIOB)
- {
- __HAL_RCC_GPIOB_CLK_ENABLE(); //使能GPIOB时钟
- }
- if(IIC_Type_t->GPIOx_SCL == GPIOC || IIC_Type_t->GPIOx_SDA == GPIOC)
- {
- __HAL_RCC_GPIOC_CLK_ENABLE(); //使能GPIOC时钟
- }
- if(IIC_Type_t->GPIOx_SCL == GPIOD || IIC_Type_t->GPIOx_SDA == GPIOD)
- {
- __HAL_RCC_GPIOD_CLK_ENABLE(); //使能GPIOD时钟
- }
- if(IIC_Type_t->GPIOx_SCL == GPIOE || IIC_Type_t->GPIOx_SDA == GPIOE)
- {
- __HAL_RCC_GPIOE_CLK_ENABLE(); //使能GPIOE时钟
- }
- if(IIC_Type_t->GPIOx_SCL == GPIOH || IIC_Type_t->GPIOx_SDA == GPIOH)
- {
- __HAL_RCC_GPIOH_CLK_ENABLE(); //使能GPIOH时钟
- }
- //GPIO_SCL初始化设置
- GPIO_Initure.Pin=IIC_Type_t->GPIO_SCL;
- GPIO_Initure.Mode=GPIO_MODE_OUTPUT_PP; //推挽输出
- GPIO_Initure.Pull=GPIO_PULLUP; //上拉
- GPIO_Initure.Speed=GPIO_SPEED_FREQ_VERY_HIGH; //快速
- HAL_GPIO_Init(IIC_Type_t->GPIOx_SCL,&GPIO_Initure);
- //GPIO_SDA初始化设置
- GPIO_Initure.Pin=IIC_Type_t->GPIO_SDA;
- GPIO_Initure.Mode=GPIO_MODE_OUTPUT_PP; //推挽输出
- GPIO_Initure.Pull=GPIO_PULLUP; //上拉
- GPIO_Initure.Speed=GPIO_SPEED_FREQ_VERY_HIGH; //快速
- HAL_GPIO_Init(IIC_Type_t->GPIOx_SDA,&GPIO_Initure);
- //SCL与SDA的初始化均为高电平
- IIC_SCL(IIC_Type_t,1);
- IIC_SDA(IIC_Type_t,1);
- }
- //IIC Start
- static void IIC_Start_t(const struct IIC_Type* IIC_Type_t)
- {
- SDA_OUT(IIC_Type_t); //sda线输出
- IIC_SDA(IIC_Type_t,1);
- IIC_SCL(IIC_Type_t,1);
- IIC_Type_t->delay_us(4);
- IIC_SDA(IIC_Type_t,0); //START:when CLK is high,DATA change form high to low
- IIC_Type_t->delay_us(4);
- IIC_SCL(IIC_Type_t,0); //钳住I2C总线,准备发送或接收数据
- }
- //IIC Stop
- static void IIC_Stop_t(const struct IIC_Type* IIC_Type_t)
- {
- SDA_OUT(IIC_Type_t); //sda线输出
- IIC_SCL(IIC_Type_t,0);
- IIC_SDA(IIC_Type_t,0); //STOP:when CLK is high DATA change form low to high
- IIC_Type_t->delay_us(4);
- IIC_SCL(IIC_Type_t,1);
- IIC_SDA(IIC_Type_t,1); //发送I2C总线结束信号
- IIC_Type_t->delay_us(4);
- }
- //IIC_Wait_ack 返回HAL_OK表示wait成功,返回HAL_ERROR表示wait失败
- static uint8_t IIC_Wait_Ack_t(const struct IIC_Type* IIC_Type_t) //IIC_Wait_ack,返回wait失败或是成功
- {
- uint8_t ucErrTime = 0;
- SDA_IN(IIC_Type_t); //SDA设置为输入
- IIC_SDA(IIC_Type_t,1);IIC_Type_t->delay_us(1);
- IIC_SCL(IIC_Type_t,1);IIC_Type_t->delay_us(1);
- while(READ_SDA(IIC_Type_t))
- {
- ucErrTime++;
- if(ucErrTime>250)
- {
- IIC_Type_t->IIC_Stop(IIC_Type_t);
- return HAL_ERROR;
- }
- }
- IIC_SCL(IIC_Type_t,0);//时钟输出0
- return HAL_OK;
- }
- //产生ACK应答
- static void IIC_Ack_t(const struct IIC_Type* IIC_Type_t)
- {
- IIC_SCL(IIC_Type_t,0);
- SDA_OUT(IIC_Type_t);
- IIC_SDA(IIC_Type_t,0);
- IIC_Type_t->delay_us(2);
- IIC_SCL(IIC_Type_t,1);
- IIC_Type_t->delay_us(2);
- IIC_SCL(IIC_Type_t,0);
- }
- //产生NACK应答
- static void IIC_NAck_t(const struct IIC_Type* IIC_Type_t)
- {
- IIC_SCL(IIC_Type_t,0);
- SDA_OUT(IIC_Type_t);
- IIC_SDA(IIC_Type_t,1);
- IIC_Type_t->delay_us(2);
- IIC_SCL(IIC_Type_t,1);
- IIC_Type_t->delay_us(2);
- IIC_SCL(IIC_Type_t,0);
- }
- //IIC_Send_Byte,入口参数为要发送的字节
- static void IIC_Send_Byte_t(const struct IIC_Type* IIC_Type_t,uint8_t txd)
- {
- uint8_t t = 0;
- SDA_OUT(IIC_Type_t);
- IIC_SCL(IIC_Type_t,0);//拉低时钟开始数据传输
- for(t=0;t<8;t++)
- {
- IIC_SDA(IIC_Type_t,(txd&0x80)>>7);
- txd <<= 1;
- IIC_Type_t->delay_us(2); //对TEA5767这三个延时都是必须的
- IIC_SCL(IIC_Type_t,1);
- IIC_Type_t->delay_us(2);
- IIC_SCL(IIC_Type_t,0);
- IIC_Type_t->delay_us(2);
- }
- }
- //IIC_Send_Byte,入口参数为是否要发送ACK信号
- static uint8_t IIC_Read_Byte_t(const struct IIC_Type* IIC_Type_t,uint8_t ack)
- {
- uint8_t i,receive = 0;
- SDA_IN(IIC_Type_t);//SDA设置为输入
- for(i=0;i<8;i++ )
- {
- IIC_SCL(IIC_Type_t,0);
- IIC_Type_t->delay_us(2);
- IIC_SCL(IIC_Type_t,1);
- receive<<=1;
- if(READ_SDA(IIC_Type_t))receive++;
- IIC_Type_t->delay_us(1);
- }
- if (!ack)
- IIC_Type_t->IIC_NAck(IIC_Type_t);//发送nACK
- else
- IIC_Type_t->IIC_Ack(IIC_Type_t); //发送ACK
- return receive;
- }
- //实例化一个IIC1外设,相当于一个结构体变量,可以直接在其他文件中使用
- IIC_TypeDef IIC1 = {
- .GPIOx_SCL = GPIOA, //GPIO组为GPIOA
- .GPIOx_SDA = GPIOA, //GPIO组为GPIOA
- .GPIO_SCL = GPIO_PIN_5, //GPIO为PIN5
- .GPIO_SDA = GPIO_PIN_6, //GPIO为PIN6
- .IIC_Init = IIC_Init_t,
- .IIC_Start = IIC_Start_t,
- .IIC_Stop = IIC_Stop_t,
- .IIC_Wait_Ack = IIC_Wait_Ack_t,
- .IIC_Ack = IIC_Ack_t,
- .IIC_NAck = IIC_NAck_t,
- .IIC_Send_Byte = IIC_Send_Byte_t,
- .IIC_Read_Byte = IIC_Read_Byte_t,
- .delay_us = delay_us //需自己外部实现delay_us函数
- };
复制代码
上述就是IIC驱动的封装,由于没有应用场景暂不测试其实用性,待下面ATC64的驱动缝缝扎黄写完之后一起测试使用。
ATC64XX驱动封装实现
at24cxx.h头文件主要是类模板的定义,具体如下:
- // 以下是共定义个具体容量存储器的容量
- #define AT24C01 127
- #define AT24C02 255
- #define AT24C04 511
- #define AT24C08 1023
- #define AT24C16 2047
- #define AT24C32 4095
- #define AT24C64 8191 //8KBytes
- #define AT24C128 16383
- #define AT24C256 32767
- //定义AT24CXX类
- typedef struct AT24CXX_Type
- {
- //属性
- u32 EEP_TYPE; //存储器类型(存储器容量)
- //操作
- IIC_TypeDef IIC; //IIC驱动
- uint8_t (*AT24CXX_ReadOneByte)(const struct AT24CXX_Type*,uint16_t); //指定地址读取一个字节
- void (*AT24CXX_WriteOneByte)(const struct AT24CXX_Type*,uint16_t,uint8_t); //指定地址写入一个字节
- void (*AT24CXX_WriteLenByte)(uint16_t,uint32_t,uint8_t); //指定地址开始写入指定长度的数据
- uint32_t (*AT24CXX_ReadLenByte)(uint16_t,uint8_t); //指定地址开始读取指定长度数据
- void (*AT24CXX_Write)(uint16_t,uint8_t *,uint16_t); //指定地址开始写入指定长度的数据
- void (*AT24CXX_Read)(uint16_t,uint8_t *,uint16_t); //指定地址开始写入指定长度的数据
- void (*AT24CXX_Init)(const struct AT24CXX_Type*); //初始化IIC
- uint8_t (*AT24CXX_Check)(const struct AT24CXX_Type*); //检查器件
- }AT24CXX_TypeDef;
- extern AT24CXX_TypeDef AT24C_64; //外部声明实例化AT24CXX对象
- at24cxx.c源文件主要是类模板具体操作函数的实现,具体如下:
- //在AT24CXX指定地址读出一个数据
- //ReadAddr:开始读数的地址
- //返回值 :读到的数据
- static uint8_t AT24CXX_ReadOneByte_t(const struct AT24CXX_Type* AT24CXX_Type_t,uint16_t ReadAddr)
- {
- uint8_t temp=0;
- AT24CXX_Type_t->IIC.IIC_Start(&AT24CXX_Type_t->IIC);
- //根据AT的型号发送不同的地址
- if(AT24CXX_Type_t->EEP_TYPE > AT24C16)
- {
- AT24CXX_Type_t->IIC.IIC_Send_Byte(&AT24CXX_Type_t->IIC,0XA0); //发送写命令
- AT24CXX_Type_t->IIC.IIC_Wait_Ack(&AT24CXX_Type_t->IIC);
- AT24CXX_Type_t->IIC.IIC_Send_Byte(&AT24CXX_Type_t->IIC,ReadAddr>>8);//发送高地址
- }else AT24CXX_Type_t->IIC.IIC_Send_Byte(&AT24CXX_Type_t->IIC,0XA0+((ReadAddr/256)<<1)); //发送器件地址0XA0,写数据
- AT24CXX_Type_t->IIC.IIC_Wait_Ack(&AT24CXX_Type_t->IIC);
- AT24CXX_Type_t->IIC.IIC_Send_Byte(&AT24CXX_Type_t->IIC,ReadAddr%256); //发送低地址
- AT24CXX_Type_t->IIC.IIC_Wait_Ack(&AT24CXX_Type_t->IIC);
- AT24CXX_Type_t->IIC.IIC_Start(&AT24CXX_Type_t->IIC);
- AT24CXX_Type_t->IIC.IIC_Send_Byte(&AT24CXX_Type_t->IIC,0XA1); //进入接收模式
- AT24CXX_Type_t->IIC.IIC_Wait_Ack(&AT24CXX_Type_t->IIC);
- temp=AT24CXX_Type_t->IIC.IIC_Read_Byte(&AT24CXX_Type_t->IIC,0);
- AT24CXX_Type_t->IIC.IIC_Stop(&AT24CXX_Type_t->IIC);//产生一个停止条件
- return temp;
- }
- //在AT24CXX指定地址写入一个数据
- //WriteAddr :写入数据的目的地址
- //DataToWrite:要写入的数据
- static void AT24CXX_WriteOneByte_t(const struct AT24CXX_Type* AT24CXX_Type_t,uint16_t WriteAddr,uint8_t DataToWrite)
- {
- AT24CXX_Type_t->IIC.IIC_Start(&AT24CXX_Type_t->IIC);
- if(AT24CXX_Type_t->EEP_TYPE > AT24C16)
- {
- AT24CXX_Type_t->IIC.IIC_Send_Byte(&AT24CXX_Type_t->IIC,0XA0); //发送写命令
- AT24CXX_Type_t->IIC.IIC_Wait_Ack(&AT24CXX_Type_t->IIC);
- AT24CXX_Type_t->IIC.IIC_Send_Byte(&AT24CXX_Type_t->IIC,WriteAddr>>8);//发送高地址
- }else AT24CXX_Type_t->IIC.IIC_Send_Byte(&AT24CXX_Type_t->IIC,0XA0+((WriteAddr/256)<<1)); //发送器件地址0XA0,写数据
- AT24CXX_Type_t->IIC.IIC_Wait_Ack(&AT24CXX_Type_t->IIC);
- AT24CXX_Type_t->IIC.IIC_Send_Byte(&AT24CXX_Type_t->IIC,WriteAddr%256); //发送低地址
- AT24CXX_Type_t->IIC.IIC_Wait_Ack(&AT24CXX_Type_t->IIC);
- AT24CXX_Type_t->IIC.IIC_Send_Byte(&AT24CXX_Type_t->IIC,DataToWrite); //发送字节
- AT24CXX_Type_t->IIC.IIC_Wait_Ack(&AT24CXX_Type_t->IIC);
- AT24CXX_Type_t->IIC.IIC_Stop(&AT24CXX_Type_t->IIC);//产生一个停止条件
- AT24CXX_Type_t->IIC.delay_us(10000);
- }
- //在AT24CXX里面的指定地址开始写入长度为Len的数据
- //该函数用于写入16bit或者32bit的数据.
- //WriteAddr :开始写入的地址
- //DataToWrite:数据数组首地址
- //Len :要写入数据的长度2,4
- static void AT24CXX_WriteLenByte_t(uint16_t WriteAddr,uint32_t DataToWrite,uint8_t Len)
- {
- uint8_t t;
- for(t=0;t<Len;t++)
- {
- AT24CXX_WriteOneByte(WriteAddr+t,(DataToWrite>>(8*t))&0xff);
- }
- }
- //在AT24CXX里面的指定地址开始读出长度为Len的数据
- //该函数用于读出16bit或者32bit的数据.
- //ReadAddr :开始读出的地址
- //返回值 :数据
- //Len :要读出数据的长度2,4
- static uint32_t AT24CXX_ReadLenByte_t(uint16_t ReadAddr,uint8_t Len)
- {
- uint8_t t;
- uint32_t temp=0;
- for(t=0;t<Len;t++)
- {
- temp<<=8;
- temp+=AT24CXX_ReadOneByte(ReadAddr+Len-t-1);
- }
- return temp;
- }
- //在AT24CXX里面的指定地址开始写入指定个数的数据
- //WriteAddr :开始写入的地址 对24c64为0~8191
- //pBuffer :数据数组首地址
- //NumToWrite:要写入数据的个数
- static void AT24CXX_Write_t(uint16_t WriteAddr,uint8_t *pBuffer,uint16_t NumToWrite)
- {
- while(NumToWrite--)
- {
- AT24CXX_WriteOneByte(WriteAddr,*pBuffer);
- WriteAddr++;
- pBuffer++;
- }
- }
- //在AT24CXX里面的指定地址开始读出指定个数的数据
- //ReadAddr :开始读出的地址 对24c64为0~8191
- //pBuffer :数据数组首地址
- //NumToRead:要读出数据的个数
- static void AT24CXX_Read_t(uint16_t ReadAddr,uint8_t *pBuffer,uint16_t NumToRead)
- {
- while(NumToRead)
- {
- *pBuffer++=AT24CXX_ReadOneByte(ReadAddr++);
- NumToRead--;
- }
- }
- //初始化IIC接口
- static void AT24CXX_Init_t(const struct AT24CXX_Type* AT24CXX_Type_t)
- {
- AT24CXX_Type_t->IIC.IIC_Init(&AT24CXX_Type_t->IIC);//IIC初始化
- }
- //检查器件,返回0表示检测成功,返回1表示检测失败
- static uint8_t AT24CXX_Check_t(const struct AT24CXX_Type* AT24CXX_Type_t)
- {
- uint8_t temp;
- temp = AT24CXX_Type_t->AT24CXX_ReadOneByte(AT24CXX_Type_t,AT24CXX_Type_t->EEP_TYPE);//避免每次开机都写AT24CXX
- if(temp == 0X33)return 0;
- else//排除第一次初始化的情况
- {
- AT24CXX_Type_t->AT24CXX_WriteOneByte(AT24CXX_Type_t,AT24CXX_Type_t->EEP_TYPE,0X33);
- temp = AT24CXX_Type_t->AT24CXX_ReadOneByte(AT24CXX_Type_t,AT24CXX_Type_t->EEP_TYPE);
- if(temp==0X33)return 0;
- }
- return 1;
- }
- //实例化AT24CXX对象
- AT24CXX_TypeDef AT24C_64={
- .EEP_TYPE = AT24C64, //存储器类型(存储器容量)
- //操作
- .IIC={
- .GPIOx_SCL = GPIOA,
- .GPIOx_SDA = GPIOA,
- .GPIO_SCL = GPIO_PIN_5,
- .GPIO_SDA = GPIO_PIN_6,
- .IIC_Init = IIC_Init_t,
- .IIC_Start = IIC_Start_t,
- .IIC_Stop = IIC_Stop_t,
- .IIC_Wait_Ack = IIC_Wait_Ack_t,
- .IIC_Ack = IIC_Ack_t,
- .IIC_NAck = IIC_NAck_t,
- .IIC_Send_Byte = IIC_Send_Byte_t,
- .IIC_Read_Byte = IIC_Read_Byte_t,
- .delay_us = delay_us
- }, //IIC驱动
- .AT24CXX_ReadOneByte = AT24CXX_ReadOneByte_t, //指定地址读取一个字节
- .AT24CXX_WriteOneByte = AT24CXX_WriteOneByte_t,//指定地址写入一个字节
- .AT24CXX_WriteLenByte = AT24CXX_WriteLenByte_t, //指定地址开始写入指定长度的数据
- .AT24CXX_ReadLenByte = AT24CXX_ReadLenByte_t, //指定地址开始读取指定长度数据
- .AT24CXX_Write = AT24CXX_Write_t, //指定地址开始写入指定长度的数据
- .AT24CXX_Read = AT24CXX_Read_t, //指定地址开始读取指定长度的数据
- .AT24CXX_Init = AT24CXX_Init_t, //初始化IIC
- .AT24CXX_Check = AT24CXX_Check_t //检查器件
- };
复制代码
at24cxx.c源文件主要是类模板具体操作函数的实现,具体如下:
- //在AT24CXX指定地址读出一个数据
- //ReadAddr:开始读数的地址
- //返回值 :读到的数据
- static uint8_t AT24CXX_ReadOneByte_t(const struct AT24CXX_Type* AT24CXX_Type_t,uint16_t ReadAddr)
- {
- uint8_t temp=0;
- AT24CXX_Type_t->IIC.IIC_Start(&AT24CXX_Type_t->IIC);
- //根据AT的型号发送不同的地址
- if(AT24CXX_Type_t->EEP_TYPE > AT24C16)
- {
- AT24CXX_Type_t->IIC.IIC_Send_Byte(&AT24CXX_Type_t->IIC,0XA0); //发送写命令
- AT24CXX_Type_t->IIC.IIC_Wait_Ack(&AT24CXX_Type_t->IIC);
- AT24CXX_Type_t->IIC.IIC_Send_Byte(&AT24CXX_Type_t->IIC,ReadAddr>>8);//发送高地址
- }else AT24CXX_Type_t->IIC.IIC_Send_Byte(&AT24CXX_Type_t->IIC,0XA0+((ReadAddr/256)<<1)); //发送器件地址0XA0,写数据
- AT24CXX_Type_t->IIC.IIC_Wait_Ack(&AT24CXX_Type_t->IIC);
- AT24CXX_Type_t->IIC.IIC_Send_Byte(&AT24CXX_Type_t->IIC,ReadAddr%256); //发送低地址
- AT24CXX_Type_t->IIC.IIC_Wait_Ack(&AT24CXX_Type_t->IIC);
- AT24CXX_Type_t->IIC.IIC_Start(&AT24CXX_Type_t->IIC);
- AT24CXX_Type_t->IIC.IIC_Send_Byte(&AT24CXX_Type_t->IIC,0XA1); //进入接收模式
- AT24CXX_Type_t->IIC.IIC_Wait_Ack(&AT24CXX_Type_t->IIC);
- temp=AT24CXX_Type_t->IIC.IIC_Read_Byte(&AT24CXX_Type_t->IIC,0);
- AT24CXX_Type_t->IIC.IIC_Stop(&AT24CXX_Type_t->IIC);//产生一个停止条件
- return temp;
- }
- //在AT24CXX指定地址写入一个数据
- //WriteAddr :写入数据的目的地址
- //DataToWrite:要写入的数据
- static void AT24CXX_WriteOneByte_t(const struct AT24CXX_Type* AT24CXX_Type_t,uint16_t WriteAddr,uint8_t DataToWrite)
- {
- AT24CXX_Type_t->IIC.IIC_Start(&AT24CXX_Type_t->IIC);
- if(AT24CXX_Type_t->EEP_TYPE > AT24C16)
- {
- AT24CXX_Type_t->IIC.IIC_Send_Byte(&AT24CXX_Type_t->IIC,0XA0); //发送写命令
- AT24CXX_Type_t->IIC.IIC_Wait_Ack(&AT24CXX_Type_t->IIC);
- AT24CXX_Type_t->IIC.IIC_Send_Byte(&AT24CXX_Type_t->IIC,WriteAddr>>8);//发送高地址
- }else AT24CXX_Type_t->IIC.IIC_Send_Byte(&AT24CXX_Type_t->IIC,0XA0+((WriteAddr/256)<<1)); //发送器件地址0XA0,写数据
- AT24CXX_Type_t->IIC.IIC_Wait_Ack(&AT24CXX_Type_t->IIC);
- AT24CXX_Type_t->IIC.IIC_Send_Byte(&AT24CXX_Type_t->IIC,WriteAddr%256); //发送低地址
- AT24CXX_Type_t->IIC.IIC_Wait_Ack(&AT24CXX_Type_t->IIC);
- AT24CXX_Type_t->IIC.IIC_Send_Byte(&AT24CXX_Type_t->IIC,DataToWrite); //发送字节
- AT24CXX_Type_t->IIC.IIC_Wait_Ack(&AT24CXX_Type_t->IIC);
- AT24CXX_Type_t->IIC.IIC_Stop(&AT24CXX_Type_t->IIC);//产生一个停止条件
- AT24CXX_Type_t->IIC.delay_us(10000);
- }
- //在AT24CXX里面的指定地址开始写入长度为Len的数据
- //该函数用于写入16bit或者32bit的数据.
- //WriteAddr :开始写入的地址
- //DataToWrite:数据数组首地址
- //Len :要写入数据的长度2,4
- static void AT24CXX_WriteLenByte_t(uint16_t WriteAddr,uint32_t DataToWrite,uint8_t Len)
- {
- uint8_t t;
- for(t=0;t<Len;t++)
- {
- AT24CXX_WriteOneByte(WriteAddr+t,(DataToWrite>>(8*t))&0xff);
- }
- }
- //在AT24CXX里面的指定地址开始读出长度为Len的数据
- //该函数用于读出16bit或者32bit的数据.
- //ReadAddr :开始读出的地址
- //返回值 :数据
- //Len :要读出数据的长度2,4
- static uint32_t AT24CXX_ReadLenByte_t(uint16_t ReadAddr,uint8_t Len)
- {
- uint8_t t;
- uint32_t temp=0;
- for(t=0;t<Len;t++)
- {
- temp<<=8;
- temp+=AT24CXX_ReadOneByte(ReadAddr+Len-t-1);
- }
- return temp;
- }
- //在AT24CXX里面的指定地址开始写入指定个数的数据
- //WriteAddr :开始写入的地址 对24c64为0~8191
- //pBuffer :数据数组首地址
- //NumToWrite:要写入数据的个数
- static void AT24CXX_Write_t(uint16_t WriteAddr,uint8_t *pBuffer,uint16_t NumToWrite)
- {
- while(NumToWrite--)
- {
- AT24CXX_WriteOneByte(WriteAddr,*pBuffer);
- WriteAddr++;
- pBuffer++;
- }
- }
- //在AT24CXX里面的指定地址开始读出指定个数的数据
- //ReadAddr :开始读出的地址 对24c64为0~8191
- //pBuffer :数据数组首地址
- //NumToRead:要读出数据的个数
- static void AT24CXX_Read_t(uint16_t ReadAddr,uint8_t *pBuffer,uint16_t NumToRead)
- {
- while(NumToRead)
- {
- *pBuffer++=AT24CXX_ReadOneByte(ReadAddr++);
- NumToRead--;
- }
- }
- //初始化IIC接口
- static void AT24CXX_Init_t(const struct AT24CXX_Type* AT24CXX_Type_t)
- {
- AT24CXX_Type_t->IIC.IIC_Init(&AT24CXX_Type_t->IIC);//IIC初始化
- }
- //检查器件,返回0表示检测成功,返回1表示检测失败
- static uint8_t AT24CXX_Check_t(const struct AT24CXX_Type* AT24CXX_Type_t)
- {
- uint8_t temp;
- temp = AT24CXX_Type_t->AT24CXX_ReadOneByte(AT24CXX_Type_t,AT24CXX_Type_t->EEP_TYPE);//避免每次开机都写AT24CXX
- if(temp == 0X33)return 0;
- else//排除第一次初始化的情况
- {
- AT24CXX_Type_t->AT24CXX_WriteOneByte(AT24CXX_Type_t,AT24CXX_Type_t->EEP_TYPE,0X33);
- temp = AT24CXX_Type_t->AT24CXX_ReadOneByte(AT24CXX_Type_t,AT24CXX_Type_t->EEP_TYPE);
- if(temp==0X33)return 0;
- }
- return 1;
- }
- //实例化AT24CXX对象
- AT24CXX_TypeDef AT24C_64={
- .EEP_TYPE = AT24C64, //存储器类型(存储器容量)
- //操作
- .IIC={
- .GPIOx_SCL = GPIOA,
- .GPIOx_SDA = GPIOA,
- .GPIO_SCL = GPIO_PIN_5,
- .GPIO_SDA = GPIO_PIN_6,
- .IIC_Init = IIC_Init_t,
- .IIC_Start = IIC_Start_t,
- .IIC_Stop = IIC_Stop_t,
- .IIC_Wait_Ack = IIC_Wait_Ack_t,
- .IIC_Ack = IIC_Ack_t,
- .IIC_NAck = IIC_NAck_t,
- .IIC_Send_Byte = IIC_Send_Byte_t,
- .IIC_Read_Byte = IIC_Read_Byte_t,
- .delay_us = delay_us
- }, //IIC驱动
- .AT24CXX_ReadOneByte = AT24CXX_ReadOneByte_t, //指定地址读取一个字节
- .AT24CXX_WriteOneByte = AT24CXX_WriteOneByte_t,//指定地址写入一个字节
- .AT24CXX_WriteLenByte = AT24CXX_WriteLenByte_t, //指定地址开始写入指定长度的数据
- .AT24CXX_ReadLenByte = AT24CXX_ReadLenByte_t, //指定地址开始读取指定长度数据
- .AT24CXX_Write = AT24CXX_Write_t, //指定地址开始写入指定长度的数据
- .AT24CXX_Read = AT24CXX_Read_t, //指定地址开始读取指定长度的数据
- .AT24CXX_Init = AT24CXX_Init_t, //初始化IIC
- .AT24CXX_Check = AT24CXX_Check_t //检查器件
- };
复制代码
简单分析:可以看出AT24CXX类中包含了IIC类的成员对象,这是一种包含关系,因为没有属性上的一致性因此谈不上继承。
之所以将IIC的类对象作为AT24CXX类的成员是因为AT24CXX的实现需要调用IIC的成员方法,IIC相当于AT24CXX更下层的驱动,因此采用包含关系更合适。
因此我们在使用AT24CXX的时候只需要实例化AT24CXX类对象就行了,因为IIC包含在AT24CXX类中间,因此不需要实例化IIC类对象,对外提供了较好的封装接口。下面我们看具体的调用方法。
主函数main调用测试
在main函数中直接使用AT24C_64来完成所有操作,下面结合代码来看:
- #include "at24cxx.h" //为了确定AT24C_64的成员方法和引用操作对象AT24C_64
- int main(void)
- {
- /************省略其他初始化工作****************/
- //第一步:调用对象初始化方法来初始化AT24C64
- AT24C_64.AT24CXX_Init(&AT24C_64);
- //第二步:调用对象检测方法来检测AT24C64
- if(AT24C_64.AT24CXX_Check(&AT24C_64) == 0)
- {
- printf("AT24C64检测成功\r\n");
- }
- else{
- printf("AT24C64检测失败\r\n");
- }
- return 0;
- }
复制代码
可以看出所有的操作都是通过AT24C_64对象调用完成的,在我们初始化好AT24C_64对象之后就可以放心大胆的调用其成员方法,这样封装的好处就是一个设备对外只提供一个对象接口,简洁明了。
总结
本文详细介绍了面向对象方法实现IIC驱动封装以及AT24CXX存储器的封装,最终对外仅提供一个操作对象接口,大大提高了代码的复用性以及封装性。
转载自:EE时间
|