你的浏览器版本过低,可能导致网站不能正常访问!
为了你能正常使用网站功能,请使用这些浏览器。

STM32F103时钟系统讲解

[复制链接]
攻城狮Melo 发布时间:2022-11-8 23:05
一、STM32F103时钟树
  首先先放一张STM32参考手册中的一张时钟树,对照着来讲,如图所示:

77f85107db1a437cb9dfeead7af43789.png

  首先对图里出现的几个名词做个介绍:
VS}CN8LOJ96ESYR%D_$OE6R.png


  为了更加清晰直观,再放上一张STM32CUBEMX里配置时钟系统的图:

d2e146e2ae1e4619809d6f78faa0ea59.png

  首先先明确一点我们的STM32有HSE、HSI、LSE、LSI、PLL五个时钟源,接下来会对这五个时钟源进行介绍。

1.1 HSE、HSI、PLL、SYSCLK

  我们想要配置的时钟是SYSCLK即系统时钟,我们一般说的STM32F103时钟72M就是指这个SYSCLK系统时钟,从图里可以看到,配置系统时钟的时钟来源主要有三个:

8b3d31099fcf45bb99e8408b656d3a0b.png

  分别是HSI、HSE、PLLCLK,我们配置系统时钟的来源可以是外部高速时钟、内部高速时钟和锁相环PLL出来的时钟信号,我们都知道在MCU没有超过最高时钟频率运行之前,时钟频率越高,系统运行更加稳定,故我们配置时钟时一般都是希望配置的时钟频率接近上限。
  在STM32F103芯片里HSI给定了是内部8M的高速时钟,HSE可以是从4~16M之间自己选择焊接任意频率的晶振,而PLL锁相环是可以将时钟频率倍频提高可以实现稳定且高频的时钟信号。我们先来看一下PLL锁相环的时钟线:

2ecd16f905bc4a81891b091239d1bf3e.png

  PLL锁相环的输入可以是经过二分频的HSI也就是4M的内部时钟提供的信号,还有外部高速时钟HSE可以不分频或者二分频的信号,一般来说我们都会采用外部的时钟信号更加的稳定和准确,这里我们单片机外部焊接的是8M的晶振故我们选择PLL输入来源是HSE,在PLL内是经过*PLLMul(*9)来实现达到72M的频率,最后输出给到SYSCLK。

1.2 LSE、LSI、RTC
  讲到这里HSE、HSI、PLL、SYSCLK相信大家都有了认识,接下来还有两个LSI和LSE有什么作用呢,我们看到STM32参考手册里有这样一段话:

0e1ea34bf28b4d6ba0c13067d53ddac0.png

  我们的芯片内部低速时钟LSI是40khz的,用来驱动看门狗或者是RTC时钟的,外部的低速时钟是32.768khz可以用来驱动RTC,很遗憾我没有做过关于RTC的实验,故对实时时钟的解释不是很充分,没有特殊要求一般不会去用到,如图所示:

822a6f9f206d4ef3aa890c479f35dbb0.png

1.3 重要提示
  上面介绍了五个时钟源,我们在不使用时,任一个时钟源都可被独立地启动或关闭,由此优化系统功耗,比如说我只用了一个HSE和PLL来配置SYSCLK,那么其他的时钟源可以不需要开启,以此降低功耗。

1.4 HCLK、PCLK1、PCLK2
  配置完SYSCLK算是完成了时钟配置的一半,我们接着看时钟图后面,如图所示:

5651f43bde2e492c90dfb9f23a0d395d.png

  SYSCLK系统时钟出来后可以看到会经过一个AHB预分频器,将分频后的信号给至HCLK高速外设时钟,STM32规定最大的时钟信号是72MHz,和我们配置的SYSCLK一致,一般都是将SYSCLK配置为最高的HCLK时钟频率之后预分频器分频系数给1,将SYSCLK和HCLK时钟信号频率配置最高,以此达到系统高稳定性高性能状态,HCLK出来的时钟信号会给至AHB总线、核心存储器、DMA:

f7c67056acce4ae6b3381cb8f768a4fe.png

  STM32还设置了两条外设时钟线,一条是PCLK1低速时钟,另一条是PCLK2高速时钟,PCLK1经过AHB1预分频器分频最高可达36M,PCLK2经过AHB2预分频器分频最高可达72M,如图所示:

2a34abc27940462e994b36a25b83c57b.png

  在外设中存在着比较特殊的比如定时器,如上图所示,在APB1/2分频完成后有对搭载的定时器TIMER进行了分频那么怎么确定应该是多少呢,可以在STM32参考手册中找到这样一段:

e697b83e5c4d43a198d9c0168df8569f.png

  为什么需要这么多外设的时钟呢,我们都知道在操作STM32外设之前都需要打开对应的外设时钟,比如我要操作GPIOA01输出高电平,我需要先打开GPIOA的外设时钟,才能对引脚进行操作,如下图所示是STM32F103各个外设时钟搭载的外设:
  AHB搭载了DMA1/2、SRAM、核心存储器等都在HCLK提供的时钟频率下运行,比如想要用DMA1就需要通过打开AHB下的DMA1时钟,时钟频率就是HCLK,才能使用DMA1。

194daa2843a54fd782b2c90e06401903.png

  APB2搭载了例如GPIOA~G、ADC等

6e178c0262b94cb8a93dd5d896f5ae93.png

  APB1搭载了通用定时器、USART、CAN等外设

61bb9fb180c74d2dbf0079bc8061e673.png

1.5 时钟树小结
  一条较为完整的时钟配置路线大致为:HSE–PLL–SYSCLK–AHB–HCLK–AHB1–PCLK1(/–AHB2–PCLK2),综上就是STM32配置时钟树的大部分内容,相信大家对时钟树的理解进一步加深,接下来我们讲怎么在标准库中配置我们的时钟系统。

二、程序配置(以之前新建的工程为例)
  第一步打开我们的工程文件定位到startup文件夹,双击打开我们的启动文件,如图所示:

c078b8b58699408f957e08da30672f4a.png

  第二步我们知道STM32程序都是在启动文件里开始执行的,所以我们下拉代码找到程序运行的入口SystemInit,选中SystemInit鼠标右键单击Go To Definition…或者选中后按下快捷键F12进行跳转,如图所示:

35d0948319044dfd83a92571bc8949d0.png

  第三步 SystemInit函数刚开始是初始化了很多与时钟相关的寄存器,将RCC时钟配置重置为默认的重置状态,往下看会找到一个SetSysClock()的函数,再次跳转,找到函数主体:

0c39ddb35354468e918073257ab7643f.png

  第四步跳转后可以看到这里通过判断标识符的方式将会执行SetSysClockTo72()函数,我们设置了72M的系统时钟,可以点击宏定义标识符查看,根据需要可以选择不同的时钟频率,如下两图:

13211d478bca4f5387d092e12099f3f1.png

47d635e25e6145808327d5b94f289cb0.png

  第五步再次点击跳转SetSysClockTo72()函数,可以看到,我们进入了真正的配置系统时钟的地方,该函数起到设置“系统时钟频率”为72MHz,并配置“HCLK”、“PCLK2”和PCLK1预分压器的作用。整个系统时钟配置的过程是先启动外部晶振等待稳定然后设置好AHB,APB1,APB2,PLL相关的系数再启动PLL维持稳定后完成时钟配置,可以通过官方提供的注释看到,比较关键的一段如图:

bbcf4f2212d94df5be9998fbccea0178.png

  可以看到,HCLK配置为分频系数为1和SYSCLK频率相等,PCLK2分频系数也是1和HCLK频率相等,PCLK1分频系数为2是HCLK频率的二分频,但是注释却打了相等可能是注释打错了。

35e64dd4d70c4b32911514a3b92b7704.png

  这里是PLL锁相环的配置,需要留意的是RCC_CFGR_PLLMULL9这个参数,最后HSE出来的信号会乘上9提供给我们的SYSCLK信号。
  第六步到这里为止所有的分频系数参数都设置完毕,最后要等待PLL提供稳定的时钟信号,整个系统完成时钟配置,如图所示:

4ea3c96935b04b7c8b246306f4a1172d.png

  注:那我们通过程序查询比如HCLK的时钟,程序怎么知道HSE是多少呢,我们可以看到在stm32f10x.h里有一个HSE_VALUE的参数,这个参数定义的是我们使用的外部晶振的频率,这是8M,如图所示:

b57ce450ce334d52980f93988386d3b9.png

三、小结
  这一讲我们认识并强化了对系统时钟的概念和理解,对程序的配置上有了进一步的认识,大家可以在自己研读一下设置时钟的程序,这里程序讲的比较省略了关注点在时钟配置上了,下一讲会教大家如何运用keil5的DEBUG功能查询我们设置好的时钟频率究竟对不对。
————————————————
版权声明:水水爱污污


收藏 1 评论0 发布时间:2022-11-8 23:05

举报

0个回答

所属标签

相似分享

官网相关资源

关于
我们是谁
投资者关系
意法半导体可持续发展举措
创新与技术
意法半导体官网
联系我们
联系ST分支机构
寻找销售人员和分销渠道
社区
媒体中心
活动与培训
隐私策略
隐私策略
Cookies管理
行使您的权利
官方最新发布
STM32N6 AI生态系统
STM32MCU,MPU高性能GUI
ST ACEPACK电源模块
意法半导体生物传感器
STM32Cube扩展软件包
关注我们
st-img 微信公众号
st-img 手机版