Cube.AI和NanoEdge AI这两款软件工具有哪些优秀的功能呢?Cube.AI,它是一个能够很快评估、转换、和部署机器学习或深度神经网络在STM32 MCU上的工具。也就是,它的输入是已经被训练好的神经网络模型或机器学习模型,它的输出是可以运行在STM32上的代码。 Cube.AI不仅仅是一个转换工具,它里面有非常多、非常好的优化功能,能够让代码量非常小,使其能够更优化的部署在STM32上。据丁晓磊介绍,Cube.AI,能够支持所有主流的AI框架,比如TensorFlow Lite、Carrots、Pytorch、ONNX等,还有一些Machine Learning算法。Cube.AI工具有两个版本:一个是STM32Cube.AI,是原本的PC版本,为STM32准备的AI转换和优化,可以直接在自己的PC上使用;一个是STM32Cube.AI开发云,是最新的线上AI服务器,也就是ST在开发者云上部署好,只要用开发者云,就可以直接用这个工具。! f: T! }' h! h: p) w, | STM32Cube.AI开发云版本,有一个工程师很欢迎的功能,就是它有一个在线的开发板推理时间的评估功能。丁晓磊表示,ST实际上有一个服务器,后面连了很多真实的STM32的开发板。使用者可以非常快知道,自己训练好的模型,在这个开发板上内存占用够不够,评估推理时间。在很多应用里,对推理时间是有明确要求的。为了很快得到推理时间,使用者可以非常方便地用在线的开发者云很快评估一个训练好的模型。 ( K# k% G2 Z1 A& E NanoEdge AI软件工具,面向嵌入式开发者提供一体化的机器学习方案。从刚开始的数据收集、模型选择、数据训练,到生成模型、优化部署,它是一个从头到尾整个支持机器学习优化部署的工具。它的优势是,不需要非常大的数据量,又有比较高的内存占用效率。有一个洗衣机应用案例,这个洗衣机的称重精准度是100g,如果不用AI算法,业界普通的称重精准度是300g到500g。这个100g的算法是如何实现的呢?它就是用了NanoEdge AI这个软件工具来实现的,NanoEdge AI这个工具需要的数据信号,就是洗衣机本来电机里面的电流的特征信号,不需要再增加额外的传感器去实现这个功能。而且它的Flash和SRAM大概都只有10KB左右,意味着你可以在原有的MCU里面增加一点空间,就能实现非常好的精准度,非常高的称重检测。这就是这个工具比较好的优势。) J" M4 @& T$ d# @ 4 O8 G8 ^3 R. w6 p; D 据丁晓磊介绍,客户有越来越多的算法用例需求,用于创造更多智能产品。比如:1、希望设备能够自主适应目标环境并检测异常状态;2、想检测任何的异常值;3、想根据信号来检测发生的问题的类型;4、想预测何时会达到特定的振动水平,以便在达到该极限之前有时间采取纠正措施。而NanoEdge AI就可以为客户解决这些问题。 转载自电子发烧网公众号 & @ A0 P1 x! U) a" P/ f 4 ^! P. A7 o1 C8 U% j) j |
【STM32H7S78-DK评测】移植AI框架TensorFlow【DSP指令加速篇】
【STM32H7S78-DK评测】移植AI框架TensorFlow【下篇】
【STM32H7S78-DK评测】移植AI框架TensorFlow Lite【上篇】
【STM32H7S78-DK评测】移植边缘AI推理框架——TFLM(TensorFlow Lite for Microcontrollers)上篇
破解边缘AI硬件与软件挑战,意法半导体解读三大创新要点
意法半导体助力企业产品智能化,加快边缘人工智能应用
STM32不至于芯,2023济南站研讨会
ST机器学习汽车解决方案
边缘AI领域,ST可以提供哪些软硬件支持
ISPU的运行原理