你的浏览器版本过低,可能导致网站不能正常访问!
为了你能正常使用网站功能,请使用这些浏览器。

从STM32开始深度嵌入式AI设计秘诀

[复制链接]
yumeii 发布时间:2019-12-31 16:36
您应该注意人工智能(AI)的两个关键方面。首先,它正被设计为网络深处越来越多的嵌入式系统,从工业控制到汽车应用再到消费/大众市场设备。因此,您很有可能需要入门指南,了解如何使用这些与AI相关的组件。" ]+ s: x+ M. h$ z( H$ ?% }
3 C$ |8 w" c2 w) ]. V

& t. ?- A  ?4 s6 ~9 w$ @第二个方面是,围绕AI进行设计可能是一项复杂的工作。这就是我们的用武之地。我们的目的是提高您的生产率,并为在AI领域取得成功提供秘诀。我们会为您指明正确的方向,因此您成功的可能性很高。
  P5 l5 W+ |9 Y( c9 B6 _! ^& o7 b- j, z  o
+ O5 J# C& i" n2 \: W
1.png ) v. u/ R, f5 y+ i! Q: R

, |* ]/ `) f1 |! M2 f

4 a+ U' E& O2 Z! I+ tAI设计的秘诀可以像任何其他嵌入式系统一样开始—尽管选择合适的微处理器/微控制器可能应该考虑“ AI友好”生态系统的可用性。在这种情况下,我们将从STM32开始。生态系统包括STM32Cube.AI,它是ST工具包中的一个软件包,可以与深度学习库进行互操作,以自动转换经过预训练的人工神经网络,并将这种转换映射到几乎任何STM32微控制器(MCU)上。. k) Y) Q+ S2 m7 L. G* Q

4 P/ ^$ d8 h% t! p/ z( A. T

- j+ e% g7 H/ j: SAI配方中的下一个要素是AI深度学习开放软件。TensorFlow,Keras,Pytorch和Caffe是最常见和最受欢迎的各种框架。在您的框架内,您可以生成您的神经网络库,这要归功于AI应用程序包中提供的ST的预训练模型,从而简化了该过程。
. u3 R( f1 ?, a. [( C
1 U! R# @4 t; n1 T
0 w0 v  L8 t; l5 v, d# e
例如,使用Keras或TensorFlow,您基本上可以创建一个拓扑模型来表示您的神经网络或节点网络。从简单的数学函数(例如加法)到复杂的多变量非线性方程,每个节点都可以是具有不同复杂程度的张量上的运算。
* n2 S3 h8 {- w  M- t9 w5 E8 W. t$ n7 [
( h3 a& w- g- l4 j' V
这些操作返回在网络图上绘制的数据。棘手的地方在于,一个操作可以使用和产生二维以上的数据(称为张量)。这次对话有些深入,不在本文讨论范围之内,但是有一些不错的参考资料。, R2 }7 n3 |0 [

$ L1 V' g0 \& X$ B' Q6 {$ c
- d) N$ |, X9 k* }  C& e
然后,通过一个工具执行这样的转换,该工具可以生成一个库,该库生成可以集成到项目中的代码。STM32Cube.AI及其输出库可以在任何STM32 MCU上运行。为了进一步简化与客户的集成,意法半导体在单个功能包中生成了一些端到端应用示例,用于运动,音频和图像分析。
. X$ j7 M* S9 R9 Y% i3 L1 i0 T, z5 Z% V. v% s

  r" V, R5 b$ |8 j: I现在您已经拥有了上层的硬件和软件,下一步将是使用新生的嵌入式系统或从其他来源获取一些测试数据。测试数据使用Keras或TensorFlow Lite等工具训练神经网络。正如您所期望的那样,这是一个持续不断的迭代过程,因此将不断完善,更新和改进模型,直到达到所需的精度水平为止。该训练过程生成了一个模型,该模型可以由STM32Cube.AI工具自动转换为STM32 MCU的优化运行时库。9 ?" v4 F7 f2 O
/ v7 g+ ?3 Q, S7 C3 `' H

. l  i7 l: ~& v& \ 2.png . \# F( l) r  q8 e

4 j7 A1 e' _* s3 o7 A) b6 Y

7 Z0 V; J/ h: U准备开始您的AI设计了吗?如果是这样,则可以根据您的应用程序使用各种MCU。意法半导体已经发布了许多视频,展示了其微控制器在多种应用中的应用。尽管您的性能要求可能会有所不同并导致选择不同的MCU,但是您可以在高性能STM32H7上进行对象分类,或者在80MHz STM32L476JGY或类似的微控制器上进行可穿戴/健康应用。
3 |$ g" h9 l  G. d" j
; u* g6 s+ S3 N' q5 ^
- B! |, _! K! q# i/ o7 c
最重要的是,如果您现在还没有AI,那么很有可能在您的未来。因此,如果您还不熟悉如何将其整合到设计中,那么该学习一下了。重要提示:人工智能生态系统正在迅速发展,因此明智的选择是那些供应商,其路线图可以表明他们对变革的步伐的理解,其投资也可以表明他们愿意跟上发展的步伐。/ }, ^1 a0 D" A) l+ [" G
& L$ E- I; i, g* O( a9 @
收藏 评论1 发布时间:2019-12-31 16:36

举报

1个回答
xujiantj 回答时间:2020-1-2 08:27:40
感谢分享

所属标签

相似分享

官网相关资源

关于
我们是谁
投资者关系
意法半导体可持续发展举措
创新与技术
意法半导体官网
联系我们
联系ST分支机构
寻找销售人员和分销渠道
社区
媒体中心
活动与培训
隐私策略
隐私策略
Cookies管理
行使您的权利
官方最新发布
STM32Cube扩展软件包
意法半导体边缘AI套件
ST - 理想汽车豪华SUV案例
ST意法半导体智能家居案例
STM32 ARM Cortex 32位微控制器
关注我们
st-img 微信公众号
st-img 手机版