你的浏览器版本过低,可能导致网站不能正常访问!
为了你能正常使用网站功能,请使用这些浏览器。

【Nucleo】基于stm32F072的双轮自平衡车(减速电机PID/MPU6050) 精华  

[复制链接]
xyc2690 提问时间:2015-1-10 16:53 /
阅读主题, 点击返回1楼
收藏 13 评论99 发布时间:2015-1-10 16:53
99个回答
anny 回答时间:2015-6-15 13:55:28
烧多了也就会了
yigerenday 回答时间:2015-6-16 09:06:16
谢谢分享
烟花绽放 回答时间:2015-6-24 11:21:19
留个脚印,,,,,
simon LI 回答时间:2016-5-12 09:31:31
谢谢楼主的分享
jj_feng 回答时间:2016-8-9 15:18:24
xyc2690 发表于 2015-1-29 15:34
DMP读取四元数,转化成欧拉角~~

谢谢 楼主分享!
gameng 回答时间:2016-8-9 15:31:51
谢谢楼主分享!学习啦...
孤独的文艺青年 回答时间:2016-8-9 18:37:11
我用printf("%0.2f    %0.2f    %0.2f\r\n",Angle,Angle_ax,Gyro_y);函数分别读取的加速度,角速度和倾角,我发现当我快速的改变板子的倾角的时候,比如快速变化10度,Angle(卡尔曼滤波后的倾角)瞬时变化非常快,可能会瞬间变化几十度然后回到正常角度,而当我缓慢变化10度的时候,Angle变化是正常线性变化到10度,在这两种变化中,Angle_ax(从MPU6050读取的值经过处理后的陀螺仪的Y轴数据)的变化一直都是线性正常的,并且Angle的值特别接近Angle_ax的值
问题:1,我快速改变板子倾角时Angle的变化正常吗?
      2,Angle正常变化的时候是应该与Angle_ax的值相近吗?

现在情况就是,就算我是在减小倾角,只要我快速地改变,它显示的倾角都会先增大再减小,而如果我慢速改变的话,倾角就会缓慢减小而不会出现中间的角度增大


*************读取数据********************
//定义MPU6050内部地址
#define        SMPLRT_DIV                0x19        //陀螺仪采样率 典型值 0X07 125Hz
#define        CONFIG                          0x1A        //低通滤波频率 典型值 0x00
#define        GYRO_CONFIG                0x1B        //陀螺仪自检及测量范围                 典型值 0x18 不自检 2000deg/s
#define        ACCEL_CONFIG        0x1C        //加速度计自检及测量范围及高通滤波频率 典型值 0x01 不自检 2G 5Hz
#define INT_PIN_CFG     0x37
#define INT_ENABLE      0x38
#define INT_STATUS      0x3A    //只读
#define        ACCEL_XOUT_H        0x3B
#define        ACCEL_XOUT_L        0x3C
#define        ACCEL_YOUT_H        0x3D
#define        ACCEL_YOUT_L        0x3E
#define        ACCEL_ZOUT_H        0x3F
#define        ACCEL_ZOUT_L        0x40
#define        TEMP_OUT_H                0x41
#define        TEMP_OUT_L                0x42
#define        GYRO_XOUT_H    0x43
#define        GYRO_XOUT_L                0x44       
#define        GYRO_YOUT_H        0x45
#define        GYRO_YOUT_L                0x46
#define        GYRO_ZOUT_H        0x47
#define        GYRO_ZOUT_L                0x48

//读取寄存器原生数据
           
        MPU6050_Raw_Data.Accel_X = (buf[0]<<8 | buf[1]);
        MPU6050_Raw_Data.Accel_Y = (buf[2]<<8 | buf[3]);
        MPU6050_Raw_Data.Accel_Z = (buf[4]<<8 | buf[5]);
        MPU6050_Raw_Data.Temp =    (buf[6]<<8 | buf[7]);  
        MPU6050_Raw_Data.Gyro_X = (buf[8]<<8 | buf[9]);
        MPU6050_Raw_Data.Gyro_Y = (buf[10]<<8 | buf[11]);
        MPU6050_Raw_Data.Gyro_Z = (buf[12]<<8 | buf[13]);
      
      
        //将原生数据转换为实际值,计算公式跟寄存器的配置有关
        MPU6050_Real_Data.Accel_X = -(float)(MPU6050_Raw_Data.Accel_X)/8192.0;
        MPU6050_Real_Data.Accel_Y = -(float)(MPU6050_Raw_Data.Accel_Y)/8192.0;
        MPU6050_Real_Data.Accel_Z = (float)(MPU6050_Raw_Data.Accel_Z)/8192.0;
              MPU6050_Real_Data.Gyro_X=-(float)(MPU6050_Raw_Data.Gyro_X - gyroADC_X_offset)/65.5;   
        MPU6050_Real_Data.Gyro_Y=-(float)(MPU6050_Raw_Data.Gyro_Y - gyroADC_Y_offset)/65.5;   
        MPU6050_Real_Data.Gyro_Z=(float)(MPU6050_Raw_Data.Gyro_Z - gyroADC_Z_offset)/65.5;   
    }
   


//******卡尔曼参数************
               
const float Q_angle=0.001;  
const float Q_gyro=0.003;
const float R_angle=0.5;
const float dt=0.01;                          //dt为kalman滤波器采样时间;
const char  C_0 = 1;
float Q_bias, Angle_err;
float PCt_0, PCt_1, E;
float K_0, K_1, t_0, t_1;
float Pdot[4] ={0,0,0,0};
float PP[2][2] = { { 1, 0 },{ 0, 1 } };

/*****************卡尔曼滤波**************************************************/
void Kalman_Filter(float Accel,float Gyro)               
{
        Angle+=(Gyro - Q_bias) * dt; //先验估计
       
        Pdot[0]=Q_angle - PP[0][1] - PP[1][0]; // Pk-先验估计误差协方差的微分

        Pdot[1]= -PP[1][1];
        Pdot[2]= -PP[1][1];
        Pdot[3]=Q_gyro;
       
        PP[0][0] += Pdot[0] * dt;   // Pk-先验估计误差协方差微分的积分
        PP[0][1] += Pdot[1] * dt;   // =先验估计误差协方差
        PP[1][0] += Pdot[2] * dt;
        PP[1][1] += Pdot[3] * dt;
               
        Angle_err = Accel - Angle;        //zk-先验估计
       
        PCt_0 = C_0 * PP[0][0];
        PCt_1 = C_0 * PP[1][0];
       
        E = R_angle + C_0 * PCt_0;
       
        K_0 = PCt_0 / E;
        K_1 = PCt_1 / E;
       
        t_0 = PCt_0;
        t_1 = C_0 * PP[0][1];

        PP[0][0] -= K_0 * t_0;                 //后验估计误差协方差
        PP[0][1] -= K_0 * t_1;
        PP[1][0] -= K_1 * t_0;
        PP[1][1] -= K_1 * t_1;
               
        Angle        += K_0 * Angle_err;         //后验估计
        Q_bias        += K_1 * Angle_err;         //后验估计
        Gyro_y   = Gyro - Q_bias;         //输出值(后验估计)的微分=角速度

}

******************倾角计算*****************
void Angle_Calculate(void)
{

/****************************加速度****************************************/
       
        Accel_x  =  MPU6050_Real_Data.Accel_X;          //读取X轴加速度
        Angle_ax = Accel_x*1.2*180/3.14;     //弧度转换为度

/****************************角速度****************************************/
       
         Gyro_y = MPU6050_Real_Data.Gyro_Y;             
时间dt,所以此处不用积分
/***************************卡尔曼融合*************************************/
        Kalman_Filter(Angle_ax,Gyro_y);       //卡尔曼滤波计算倾角
       

jj_feng 回答时间:2016-8-10 14:09:02
谢谢楼主分享
全球绝版仅此 回答时间:2018-10-7 10:44:04
liujunfy527 回答时间:2018-10-25 20:35:25
谢谢分享
1234567

所属标签

相似问题

官网相关资源

关于
我们是谁
投资者关系
意法半导体可持续发展举措
创新与技术
意法半导体官网
联系我们
联系ST分支机构
寻找销售人员和分销渠道
社区
媒体中心
活动与培训
隐私策略
隐私策略
Cookies管理
行使您的权利
官方最新发布
STM32N6 AI生态系统
STM32MCU,MPU高性能GUI
ST ACEPACK电源模块
意法半导体生物传感器
STM32Cube扩展软件包
关注我们
st-img 微信公众号
st-img 手机版