
26.1 初学者重要提示8 A8 {; y( [" O5 K! M: ]: T( Z 下个章节为大家介绍两个重要知识点:频谱泄露和栅栏效应,推荐学习完毕本章后看一下。 * G; M- [# k2 @9 ~* ?8 w# |6 V' O6 j 26.2 FFT变换结果的物理意义/ l2 D$ K( V" I( h 26.2.1 理论阐释 虽然很多人都知道FFT是什么,可以用来做什么,怎么去做,但是却不知道FFT之后的结果是什意思、如何决定要使用多少点来做FFT。 7 ~3 y( |/ |- p1 n1 `# w 一个模拟信号,经过ADC采样之后,就变成了数字信号。采样定理告诉我们,采样频率要大于信号频率的两倍(要满足奈奎斯特采样定律)。 采样得到的数字信号,就可以做FFT变换了。N个采样点,经过FFT之后,就可以得到N个点的FFT结果。为了方便进行FFT运算,通常N取2的整数次方。 假设采样频率为Fs,信号频率F,采样点数为N。那么FFT之后结果就是一个为N点的复数。每一个点就对应着一个频率点。这个点的模值,就是该频率值下的幅度特性。具体跟原始信号的幅度有什么关系呢?假设原始信号的峰值为A,那么FFT的结果的每个点(除了第一个点直流分量之外)的模值就是A的N/2倍。 而第一个点就是直流分量,它的模值就是直流分量的N倍。而每个点的相位呢,就是在该频率下的信号的相位。第一个点表示直流分量(即0Hz),而最后一个点 N的再下一个点(实际上这个点是不存在的,这里是假设的第N+1个点,可以看做是将第一个点分做两半分,另一半移到最后)则表示采样频率Fs,这中间被 N-1个点平均分成N等份,每个点的频率依次增加。例如某点n所表示的频率为:4 P R. }4 h4 i9 z9 s$ s8 u& _ ) Q0 l3 h4 t* i5 L% J) p ![]() ' W3 }! H8 E' Y- C7 O 由上面的公式可以看出,Fn所能分辨到频率为 Fs/N,如果采样频率Fs为1024Hz,采样点数为1024点,则可以分辨到1Hz。1024Hz的采样率采样1024点,刚好是1秒,也就是说,采样1秒时间的信号并做FFT,则结果可以分析到1Hz,如果采样2秒时间的信号并做FFT,则结果可以分析到0.5Hz。如果要提高频率分辨力,则必须增加采样点数,也即采样时间。频率分辨率和采样时间是倒数关系。假设FFT之后某点n用复数a+bi表示,那么这个复数的模就是:, h, i A' U. j" d( D; p4 } " E0 O! p# [" V5 i; F ![]() 相位就是:' a& `2 U k6 c1 h( J0 [2 K ![]() 根据以上的结果,就可以计算出n点(n≠1,且n<=N/2)对应的信号的表达式为: ![]() 对于n=1点的信号,是直流分量,幅度即为A1/N。由于FFT结果的对称性,通常我们只使用前半部分的结果,即小于采样频率一半的结果。 26.2.2 理论计算和Matlab实际计算结果对比 下面以一个实际的信号来做说明:; Y( m2 }$ F, |; V A4 | 6 w9 ~7 r4 L: H6 T7 A 假设我们有一个信号,它含有2V的直流分量,频率为50Hz、相位为-30度、幅度为3V的交流信号,以及一个频率为75Hz、相位为90度、幅度为1.5V的交流信号。用数学表达式就是如下: 8 q# I! j7 L; B" e3 h+ e( l- b x = 2+3*cos(2*pi*50*t-pi*30/180)+1.5*cos(2*pi*75*t+pi*90/180) ( b0 g, `' r& c 式中cos参数为弧度,所以-30度和90度要分别换算成弧度。我们以256Hz的采样率对这个信号进行采样,总共采样256点。按照我们上面的分析,Fn=(n-1)*Fs/N,我们可以知道,每两个点之间的间距就是1Hz,第n个点的频率就是n-1。我们的信号有3个频率:0Hz、50Hz、75Hz,应该分别在第1个点、第51个点、第76个点上出现峰值,其它各点应该接近0。实际情况如何如下:2 i0 @5 o) X5 o4 _9 M( o; Y 第一步:在matlab上新建.m文件,文件内容如下: Fs = 256; % 采样率" j( F9 z7 D% a* w N = 256; % 采样点数$ i! F* Z2 I, O! V: L9 x4 t. K n = 0:N-1; % 采样序列& G3 O8 S3 u& V t = 0:1/Fs:1-1/Fs; % 时间序列 x = 2+3*cos(2*pi*50*t-pi*30/180)+1.5*cos(2*pi*75*t+pi*90/180) ; %原始信号3 A+ K! Y9 U0 V( q + q4 w! z" `% Z& r' V y = fft(x); %对原始信号做FFT变换( V& _( G$ P' S @ M = abs(y); %求FFT转换结果的模值 plot(n, M); %绘制FFT转换模值的曲线4 R, _% R- n8 T( G& v9 x/ H3 X 第二步:运行后显示效果如下: : ?7 l5 G7 [* J! A. T/ T& S ![]() 5 d. h" r0 i. e: g. k 第三步:从matlab的工作区获得几个关键点及其附近两个点的幅值: ![]() 7 E2 k5 v( a" [' n7 K; o 1点,2点,3点的数值如下: ![]() 0 F" ^8 l3 ~2 {! R 50点,51点,52点的数值如下:1 V+ }8 V; V8 r# M- W' u ![]() ' b g1 {! F8 ]4 e 75点,76点,77点的数值如下: ![]() 按照上面说的公式,可以计算出:0 I9 W- T( i; f! \6 d M- b0 g- J6 H 直流分量为: 512/N=512/256=2;' V$ Y+ i# q3 E3 I / N4 ~# U; A( C( D- P 50Hz信号的幅度为:384/(N/2)=384/(256/2)=3;; |+ M8 V/ [2 E) B' [) J* q 75Hz信号的幅度为:192/(N/2)=192/(256/2)=1.5。可见,从频谱分析出来的幅度是正确的。2 S+ J, q8 ]% ?! B 0 }) Q+ e/ H0 @# V7 u* E3 }; N 第四步:计算相位 计算相位要获取FFT变换后相应频率点幅值的实部和虚部,这里看第一步代码中的y变量数值即可。1 ^( h% K O$ A9 v7 ^( f ![]() ) \! ~5 m' E8 x 由于直流信号没有相位可言。这里主要看50Hz的相位和75Hz的相位。* F7 s$ D3 \8 ]* S2 T% h+ y, i 1、计算50Hz信号的相位。 c( T# W3 i }( W1 L ( k- c, G2 A8 Z! k2 r9 l y变量的第51点对应数值:332.553755053225 - 192.000000000000i9 C) p0 B+ I( s0 p: C ; S4 d2 x: |0 T9 v4 B- e 那么atan2(-192, 332.553)=-0.5236,这个结果是弧度,换算成角度180*(-0.5236)/pi=-30.0001。 这个结果与cos(2*pi*50*t-pi*30/180)中相位是相符的。+ [1 {0 t6 Y0 \ 2、计算75Hz信号的相位。 y变量的第76点对应数值:3.43858275186904e-12 + 192.000000000000i$ Q" M) \' k1 H/ N2 L/ c ' t' y7 v, b; F/ _ 那么atan2(192, 3.43858275186904e-12)=1.5708弧度,换算成角度180*1.5708/pi=90.0002。这个结果与cos(2*pi*75*t+pi*90/180)中的相位是相符的。 6 l9 N3 j+ e9 P) ]( } 总结, ~: @1 j7 E: h 根据FFT结果以及上面的分析计算,我们就可以写出信号的表达式了,它就是我们开始提供的信号。 0 E( q) @3 e( Y9 D 总的来说,这个过程就是这样:假设采样频率为Fs,采样点数为N,做FFT之后,某一点n(n从1开始)表示的频率为:Fn=(n-1)*Fs/N;该点的模值除以N/2就是对应该频率下的信号的幅度(对于直流信号是除以N);该点的相位即是对应该频率下的信号的相位。相位的计算可用函数atan2(b,a)计算。atan2(b,a)是求坐标为(a,b)点的角度值,范围从-pi到pi。要精确到xHz,则需要采样长度为1/x秒的信号,并做FFT。要提高频率分辨率,就需要增加采样点数,这在一些实际的应用中是不现实的,需要在较短的时间内完成分析。解决这个问题的方法有频率细分法,比较简单的方法是采样比较短时间的信号,然后在后面补充一定数量的0,使其长度达到需要的点数,再做FFT,这在一定程度上能够提高频率分辨力。具体的频率细分法大家可参考相关文献。 26.3 FFT变换的频谱泄露问题 为了说明频谱泄露的问题,这里我们具一个求解方波FFT变换的例子。在matlab中运行如下代码:# q( S/ } `* O" b ( r+ C$ F. ]& c' E" V4 S Fs = 256; % 采样率 N = 256; % 采样点数* o) V7 H& [, b% A( r7 Q n = 0:N-1; % 采样序列: t& p* ?: g& n! J t = 0:1/Fs:1-1/Fs; % 时间序列 x = square(2*pi*30*t, 50); %原始信号" Q6 Y7 e6 ^' X1 `: G! q y = fft(x); %对原始信号做FFT变换$ F5 e& B( w- w3 [' k- K M = abs(y); %求FFT转换结果的模值! T8 y9 t/ a- E9 S6 H plot(n, M); %绘制FFT转换模值的曲线, C- Q, ?( q, `- P% L/ T 运行代码,输出结果如下:5 H3 h9 w* F) S, v # R$ u' X5 F2 [. E! R ![]() 与方波的理论计算值相比,上面的幅频响应图中出现了很多小毛刺,其实这个就是频谱泄露的结果导致的。 下面就说说什么是频谱泄露: 对于频率为fs的正弦序列,它的频谱应该只是在fs处有离散谱。但是,在利用DFT求它的频谱做了截短,结果使信号的频谱不只是在fs处有离散谱,而是在以fs为中心的频带范围内都有谱线出现,它们可以理解为是从fs频率上“泄露”出去的,这种现象称 为频谱“泄露"(结合上面的例子就更形象了)。% P& G5 i+ }9 y$ [. {+ S& C 在实际问题中遇到的离散时间序列x(n)通常是无限长序列,因而处理这个序列的时候需要将它截断。截断相当于将序列乘以窗函数w(n)。根据频域卷积定理,时域中x(n)和w(n)相乘对应于频域中它们的离散傅立叶变换X(jw)和W(jw)的卷积。因此,x(n)截矩后的频谱不同于它以前的频谱。2 N y; ^" a. V( @0 b) i& A 为了减小频谱“泄露”的影响,往往在FFT处理中采用加窗技术,典型的加窗序列有Hamming、Blackman、Gaussian等窗序列。此外,增加窗序列的长度也可以减少频谱“泄露”。8 v# r$ a8 K- l6 ~/ z/ U" ?# c p 时域上乘上窗函数,相当于频域进行卷积。长度为无穷长的常数窗函数,频域为delta函数,卷积后的结果和原来一样。如果是有限矩形窗,频域是Sa函数,旁瓣电平起伏大,和原频谱卷积完,会产生较大的失真。' \) P; {/ W9 c 窗的频谱,越像delta函数(主瓣越窄,旁瓣越小),频谱的还原度越高。加窗就不可避免频谱泄漏,典型的加权序列有Hamming、Blackman、Gaussian等窗序列主要是为了降低降低旁瓣,对于降低频谱泄漏效果远不如增加窗序列的长度明显。1 I6 q0 T$ H2 G. I* d 周期信号加窗后做DFT仍然有可能引起频谱泄露,设fs为采样频率,N为采样序列长度,分析频率为:m*fs/N(m=0,1....),以cos函数为例,设其频率为f0,如果 f0不等于m*fs/N,就会引起除f0以外的其他m*fs/N点为非零值,即出现了泄露。 2 H* q7 |( ?' C: z+ r5 a# _5 R DFT作为有限长的运算,对于无限长的信号必须要进行一定程度的截断,既然信号已经不完整了,那么截断后的信号频谱肯定就会发生畸变,截断由窗函数来完成,实际的窗函数都存在着不同幅度的旁瓣,所以在卷积时,除了离散点的频率上有幅度分量外,在相邻的两个频率点之间也有不同程度的幅度,这些应该就是截断函数旁瓣所造成的。& W; U! ^% ^+ v* G ) l1 X! t: \8 V0 b: C" x 26.4 总结- x) }* r1 w H 通过本章节的讲解,大家应该对FFT变换结果的物理意义应该有更深入的理解了,通过后面章节的继续会让大家有更加深入的认识。 8 ?: T% Y3 [' Z4 ?/ p6 T |
【2025·STM32峰会】GUI解决方案实训分享2-编译运行TouchGFX咖啡机例程(含桌面仿真)
【2025·STM32峰会】GUI解决方案实训分享3-搭建空白TouchGFX例程并实现简单的功能(含硬件部分的串口打印)
【2025·STM32峰会】+TouchGFX实现动态进度显示以及界面切换
【2025·STM32峰会】+使用TouchGFX快速创建GUI
【2025·STM32峰会】GUI解决方案实训分享1-对LVGL咖啡机例程的牛刀小试以及问题排查
实战经验 | 关于STM32H7使用LL库生成ADC代码工作异常问题说明
实战经验 | 关于STM32H745的MC SDK电机控制工程问题的解决办法
【H745I GUI】1.GreenHouse 灯光控制
【Wio Lite AI视觉开发套件】+移植TensorFlow Lite
STM32H745I-DISCO脉冲宽度调制(PWM)