// Update Request Index and Count
USB_RequestIndexO++;
if (USB_RequestIndexO == DAP_PACKET_COUNT) {
USB_RequestIndexO = 0U;
}
USB_RequestCountO++;
if (USB_RequestIdle) {
if ((uint16_t)(USB_RequestCountI - USB_RequestCountO) != DAP_PACKET_COUNT) {
USB_RequestIdle = 0U;
SetEPRxStatus(ENDP1, EP_RX_VALID);
}
}
// Update Response Index and Count
USB_ResponseIndexI++;
if (USB_ResponseIndexI == DAP_PACKET_COUNT) {
USB_ResponseIndexI = 0U;
}
USB_ResponseCountI++;
if (USB_ResponseIdle) {
if (USB_ResponseCountI != USB_ResponseCountO) {
// Load data from response buffer to be sent back
n = USB_ResponseIndexO++;
if (USB_ResponseIndexO == DAP_PACKET_COUNT) {
USB_ResponseIndexO = 0U;
}
USB_ResponseCountO++;
USB_ResponseIdle = 0U;
//USBD_EndpointWrite(0U, USB_ENDPOINT_IN(1U), USB_Response[n], USB_RespSize[n]);
UserToPMABufferCopy(USB_Response[n],ENDP1_TXADDR,USB_RespSize[n]);
SetEPTxCount(ENDP1,USB_RespSize[n]);
SetEPTxValid(ENDP1);
}
}
}
return 0;
}
// SWO Data Queue Transfer
// buf: pointer to buffer with data
// num: number of bytes to transfer
void SWO_QueueTransfer (uint8_t *buf, uint32_t num) {
//USBD_EndpointWrite(0U, USB_ENDPOINT_IN(2U), buf, num);
uint32_t a;
flags = SWO_EventFlags;
SWO_EventFlags = 0U;
if (TraceStatus & DAP_SWO_CAPTURE_ACTIVE) {
timeout = SWO_STREAM_TIMEOUT;
timeWait=DWT->CYCCNT;
} else {
timeout = osWaitForever;
flags = osFlagsErrorTimeout;
}
if (TransferBusy == 0U) {
count = GetTraceCount();
if (count != 0U) {
index = TraceIndexO & (SWO_BUFFER_SIZE - 1U);
n = SWO_BUFFER_SIZE - index;
if (count > n) {
count = n;
}
if(count>USB_BLOCK_SIZE)
count=USB_BLOCK_SIZE;
if (flags != osFlagsErrorTimeout) {
i = index & (USB_BLOCK_SIZE - 1U);
if (i == 0U) {
count &= ~(USB_BLOCK_SIZE - 1U);
} else {
n = USB_BLOCK_SIZE - i;
if (count >= n) {
count = n;
} else {
count = 0U;
}
}
}
if (count != 0U) {
TransferSize = count;
TransferBusy = 1U;
SWO_QueueTransfer(&TraceBuf[index], count);
}
}
}
//}
return 0;
}这样修改后也不知道能否解决Trace:dataOVERFLOW,也是刚想到的,试了才能知道了,另外还要说明一下,USB_BLOCK_SIZE是声明为512字节的,即SWO_QueueTransfer(&TraceBuf[index], count);时,如果count超过64字节后就得要分包发送了,这个USB库发送部分得自己分包发送,上面的SWO_QueueTransfer发送代码和端点回调处EP2_IN_Callback已经加入发分发送了
CDC部分暂时还没加入,SWD现在是非常稳定的,而且速度感觉也是不差,就是SWO的问题不知道如何弄,另外看到其它人弄DAP,把SWD读写部分改为SPI,看了一些SWD读写协议,它好像有一个8位一组和32位一组的部分,如果换为SPI是不是就可以更快的速度读写了,另外DAP与USB之间的FIFO部分它有一个队列等待,看意思就是当有标志着队列的包时,就等待接收更多的包缓存后再执行处理,对于批量端点,连续的传输大量数据确实是批量端点的长处,因为批量数据时,端点接收完一包后不会NAK,端点会接着接收下一包,少了一些中间商的处理,也尝试过这个队列等待修改为不等待,即接收一个包,执行一次DAP处理,它同样是能正常运行的,对于批量传输来来说,感觉应该队列等待会提高USB传输的速度,比如下载程序时,Keil 一次性下发多个命令包,比如达到1K或者2K字节或者更多,DAP先全部利用批量端点的优势一次性接收下来缓存,然后DAP才执行一个个命令包的响应处理,对于读写部分构成字节为一组的就使用SPI读写数据,零散的位部分像ACK,SWD复位等待部分用IO模拟来处理,SWO部分感觉如果能修改为SPI接收估计时钟频率可以更高,这样响应速度更快,另外STM32_USB-FS-Device_Lib_V4.1.0固件库的USB端点没有FIFO,不像OTG USB FS 库哪样端点都带有FIFO,但是提供双缓存端点,准备把端点修改为双缓存的,这样当连续多包传输时,端点就不会NAK,少了这个等待时间,能增加端点的传输速率
int main(void)
{
DWT_Init();
DAP_Setup();
USB_Interrupts_Config();
Set_USBClock();
USB_Init();
//TIM3_Init(35999,0);
//TIM_Cmd(TIM3,ENABLE);
/** SWCLK/TCK I/O pin: Get Input.
\return Current status of the SWCLK/TCK DAP hardware I/O pin.
*/
__STATIC_FORCEINLINE uint32_t PIN_SWCLK_TCK_IN (void) {
return (SWCLK_TCK_IN);
}
/** SWCLK/TCK I/O pin: Set Output to High.
Set the SWCLK/TCK DAP hardware I/O pin to high level.
*/
__STATIC_FORCEINLINE void PIN_SWCLK_TCK_SET (void) {
SWCLK_TCK_OUT = 1;
}
/** SWCLK/TCK I/O pin: Set Output to Low.
Set the SWCLK/TCK DAP hardware I/O pin to low level.
*/
__STATIC_FORCEINLINE void PIN_SWCLK_TCK_CLR (void) {
SWCLK_TCK_OUT = 0;
}
/** SWDIO/TMS I/O pin: Get Input.
\return Current status of the SWDIO/TMS DAP hardware I/O pin.
*/
__STATIC_FORCEINLINE uint32_t PIN_SWDIO_TMS_IN (void) {
return (SWDIO_TMS_IN);
}
/** SWDIO/TMS I/O pin: Set Output to High.
Set the SWDIO/TMS DAP hardware I/O pin to high level.
*/
__STATIC_FORCEINLINE void PIN_SWDIO_TMS_SET (void) {
SWDIO_TMS_OUT = 1;
}
/** SWDIO/TMS I/O pin: Set Output to Low.
Set the SWDIO/TMS DAP hardware I/O pin to low level.
*/
__STATIC_FORCEINLINE void PIN_SWDIO_TMS_CLR (void) {
SWDIO_TMS_OUT = 0;
}
/** SWDIO I/O pin: Get Input (used in SWD mode only).
\return Current status of the SWDIO DAP hardware I/O pin.
*/
__STATIC_FORCEINLINE uint32_t PIN_SWDIO_IN (void) {
return (SWDIO_TMS_IN);
}
/** SWDIO I/O pin: Set Output (used in SWD mode only).
\param bit Output value for the SWDIO DAP hardware I/O pin.
*/
__STATIC_FORCEINLINE void PIN_SWDIO_OUT (uint32_t bit) {
SWDIO_TMS_OUT = bit;
}
/** SWDIO I/O pin: Switch to Output mode (used in SWD mode only).
Configure the SWDIO DAP hardware I/O pin to output mode. This function is
called prior \ref PIN_SWDIO_OUT function calls.
*/
__STATIC_FORCEINLINE void PIN_SWDIO_OUT_ENABLE (void) {
SWDIO_Output();
}
/** SWDIO I/O pin: Switch to Input mode (used in SWD mode only).
Configure the SWDIO DAP hardware I/O pin to input mode. This function is
called prior \ref PIN_SWDIO_IN function calls.
*/
__STATIC_FORCEINLINE void PIN_SWDIO_OUT_DISABLE (void) {
SWDIO_Input();
}
更换不同的板子,在这个下拉菜单里选择:
OK了,终于搞定,感谢!!!
我这个是有复位信号输出线nRESET的,不过IDE要懂得向DAP发出复位命令。
软件复位是另外一种情况,需要向目标IC发送复位“密码”,Cortex的IC有这样的密码。 这就不需要连接nRESET线了。
nRESET是受使用CMSIS-DAP的IDE的逻辑控制的, 不能随便修改。
你要的功能应该不是一定需要走nRESET这条线, 随便找一条空闲的GPIO,模拟一下DTR/RTS,很容易的吧。
你用的功能好像只是用USB转串口,那么就应该使用USB-VCP的程序来改。
或者买一个有DTR/RTS线的USB转UART的小板, 便宜得很, 5~10元一个。
/**
******************************************************************************
* @file usb_endp.c
* @author MCD Application Team
* @version V4.1.0
* @date 26-May-2017
* @brief Endpoint routines
******************************************************************************
* @attention
*
* <h2><center>© COPYRIGHT(c) 2017 STMicroelectronics</center></h2>
*
* Redistribution and use in source and binary forms, with or without modification,
* are permitted provided that the following conditions are met:
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
* 3. Neither the name of STMicroelectronics nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
******************************************************************************
*/
/* Includes ------------------------------------------------------------------*/
#include "hw_config.h"
#include "usb_lib.h"
#include "usb_istr.h"
#include "stepper.h"
#include "string.h"
#include "DAP_config.h"
#include "DAP.h"
/* Private typedef -----------------------------------------------------------*/
/* Private define ------------------------------------------------------------*/
/* Private macro -------------------------------------------------------------*/
/* Private variables ---------------------------------------------------------*/
static volatile uint16_t USB_RequestIndexI; // Request Index In
static volatile uint16_t USB_RequestIndexO; // Request Index Out
static volatile uint16_t USB_RequestCountI; // Request Count In
static volatile uint16_t USB_RequestCountO; // Request Count Out
static volatile uint8_t USB_RequestIdle; // Request Idle Flag
static volatile uint16_t USB_ResponseIndexI; // Response Index In
static volatile uint16_t USB_ResponseIndexO; // Response Index Out
static volatile uint16_t USB_ResponseCountI; // Response Count In
static volatile uint16_t USB_ResponseCountO; // Response Count Out
static volatile uint8_t USB_ResponseIdle; // Response Idle Flag
static volatile uint32_t USB_EventFlags;
static uint8_t USB_Request [DAP_PACKET_COUNT][DAP_PACKET_SIZE] __attribute__((section(".bss.USB_IO"))); // Request Buffer
static uint8_t USB_Response[DAP_PACKET_COUNT][DAP_PACKET_SIZE] __attribute__((section(".bss.USB_IO"))); // Response Buffer
static uint16_t USB_RespSize[DAP_PACKET_COUNT];
/* Private function prototypes -----------------------------------------------*/
/* Private functions ---------------------------------------------------------*/
/*******************************************************************************
* Function Name : EP1_OUT_Callback.
* Description : EP1 OUT Callback Routine.
* Input : None.
* Output : None.
* Return : None.
*******************************************************************************/
void EP1_OUT_Callback(void)
{
uint16_t n;
n = GetEPRxCount(ENDP1);
PMAToUserBufferCopy(USB_Request[USB_RequestIndexI], ENDP1_RXADDR, n);
if(n !=0){
if (USB_Request[USB_RequestIndexI][0] == ID_DAP_TransferAbort) {
DAP_TransferAbort = 1U;
} else {
USB_RequestIndexI++;
if (USB_RequestIndexI == DAP_PACKET_COUNT) {
USB_RequestIndexI = 0U;
}
USB_RequestCountI++;
USB_EventFlags = 0x01;
}
}
// Start reception of next request packet
if ((uint16_t)(USB_RequestCountI - USB_RequestCountO) != DAP_PACKET_COUNT) {
SetEPRxStatus(ENDP1, EP_RX_VALID);
} else {
USB_RequestIdle = 1U;
}
}
/*******************************************************************************
* Function Name : EP2_OUT_Callback.
* Description : EP2 OUT Callback Routine.
* Input : None.
* Output : None.
* Return : None.
*******************************************************************************/
static volatile uint32_t TX_n;
static uint8_t *pbuf;
void EP2_IN_Callback(void)
{
uint32_t a;
if(TX_n>0){
pbuf+=64;
if(TX_n>64){
a=64;
TX_n-=64;
}else{
a=TX_n;
TX_n=0;
}
UserToPMABufferCopy(pbuf,ENDP2_TXADDR,a);
SetEPTxCount(ENDP2,a);
SetEPTxValid(ENDP2);
}else{
#if (SWO_STREAM != 0)
SWO_TransferComplete();
#endif
}
}
/*******************************************************************************
* Function Name : EP1_IN_Callback.
* Description : EP1 IN Callback Routine.
* Input : None.
* Output : None.
* Return : None.
*******************************************************************************/
void EP1_IN_Callback(void)
{
if (USB_ResponseCountI != USB_ResponseCountO) {
// Load data from response buffer to be sent back
UserToPMABufferCopy(USB_Response[USB_ResponseIndexO],ENDP1_TXADDR,USB_RespSize[USB_ResponseIndexO]);
SetEPTxCount(ENDP1,USB_RespSize[USB_ResponseIndexO]);
SetEPTxValid(ENDP1);
USB_ResponseIndexO++;
if (USB_ResponseIndexO == DAP_PACKET_COUNT) {
USB_ResponseIndexO = 0U;
}
USB_ResponseCountO++;
} else {
USB_ResponseIdle = 1U;
}
}
// Called during USBD_Initialize to initialize the USB HID class instance.
void DAP_FIFO_Init(void)
{
// Initialize variables
USB_RequestIndexI = 0U;
USB_RequestIndexO = 0U;
USB_RequestCountI = 0U;
USB_RequestCountO = 0U;
USB_ResponseIndexI = 0U;
USB_ResponseIndexO = 0U;
USB_ResponseCountI = 0U;
USB_ResponseCountO = 0U;
USB_ResponseIdle = 1U;
USB_EventFlags = 0U;
}
uint8_t DAP_Thread (void) {
uint32_t flags;
uint32_t n;
//for (;;) {
// osThreadFlagsWait(0x81U, osFlagsWaitAny, osWaitForever);
if((USB_EventFlags & 0x81) == 0)
{
return 0;
}
USB_EventFlags &= (~0X81);
// Process pending requests
while (USB_RequestCountI != USB_RequestCountO) {
//if (USB_RequestCountI != USB_RequestCountO) {
// Handle Queue Commands
n = USB_RequestIndexO;
while (USB_Request[n][0] == ID_DAP_QueueCommands) {
//if (USB_Request[n][0] == ID_DAP_QueueCommands) {
USB_Request[n][0] = ID_DAP_ExecuteCommands;
n++;
if (n == DAP_PACKET_COUNT) {
n = 0U;
}
if (n == USB_RequestIndexI) {
flags = USB_EventFlags;
if (flags & 0x80U) {
break;
}
}
}
// Execute DAP Command (process request and prepare response)
USB_RespSize[USB_ResponseIndexI] =
(uint16_t)DAP_ExecuteCommand(USB_Request[USB_RequestIndexO], USB_Response[USB_ResponseIndexI]);
// Update Request Index and Count
USB_RequestIndexO++;
if (USB_RequestIndexO == DAP_PACKET_COUNT) {
USB_RequestIndexO = 0U;
}
USB_RequestCountO++;
if (USB_RequestIdle) {
if ((uint16_t)(USB_RequestCountI - USB_RequestCountO) != DAP_PACKET_COUNT) {
USB_RequestIdle = 0U;
SetEPRxStatus(ENDP1, EP_RX_VALID);
}
}
// Update Response Index and Count
USB_ResponseIndexI++;
if (USB_ResponseIndexI == DAP_PACKET_COUNT) {
USB_ResponseIndexI = 0U;
}
USB_ResponseCountI++;
if (USB_ResponseIdle) {
if (USB_ResponseCountI != USB_ResponseCountO) {
// Load data from response buffer to be sent back
n = USB_ResponseIndexO++;
if (USB_ResponseIndexO == DAP_PACKET_COUNT) {
USB_ResponseIndexO = 0U;
}
USB_ResponseCountO++;
USB_ResponseIdle = 0U;
//USBD_EndpointWrite(0U, USB_ENDPOINT_IN(1U), USB_Response[n], USB_RespSize[n]);
UserToPMABufferCopy(USB_Response[n],ENDP1_TXADDR,USB_RespSize[n]);
SetEPTxCount(ENDP1,USB_RespSize[n]);
SetEPTxValid(ENDP1);
}
}
}
return 0;
}
// SWO Data Queue Transfer
// buf: pointer to buffer with data
// num: number of bytes to transfer
void SWO_QueueTransfer (uint8_t *buf, uint32_t num) {
//USBD_EndpointWrite(0U, USB_ENDPOINT_IN(2U), buf, num);
uint32_t a;
if(num>64)
{
a=64;
TX_n=num-64;
pbuf=buf;
}else {
a=num;
TX_n=0;
}
UserToPMABufferCopy(buf,ENDP2_TXADDR,a);
SetEPTxCount(ENDP2,a);
SetEPTxValid(ENDP2);
}
// SWO Data Abort Transfer
void SWO_AbortTransfer (void) {
//USBD_EndpointAbort(0U, USB_ENDPOINT_IN(2U));
//SetEPTxStatus(ENDP2, EP_TX_NAK);
SetEPTxStatus(ENDP2, EP_TX_DIS);
SetEPTxCount(ENDP2,0);
//TX_n=0;
}
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/
移植大概是这样的,利用STM32_USB-FS-Device_Lib_V4.1.0里面的例程Custom_HID修改为自定义USB设备,3个批量端点,OUT,IN,IN,由于批量端点不像HID哪样要使用报告描述符号,但要让WIN识别出驱动,添加了WINUSB相关的描述符号,在端点回调里实现DAP的FIFO处理,然后把DAP_Thread里面的线程调度修改为标志通过,放MAIN主循环里调用,测试SWD下载程序,调试都完全没问题,时钟设置为10M时感觉速度还是可以的,这能体现批量端点的好处
DWT部分即TIMESTAMP的时间参考,由于没使用Keil的核心库,得自己对相应的寄存器进行开启,而且3.5库的core_cm3.h里面没声明这个寄存器,只得自己定义一下了
__STATIC_INLINE uint32_t TIMESTAMP_GET (void) {
return (DWT->CYCCNT);
}
void DWT_Init(void)
{
/* 使能DWT外设 */
CoreDebug->DEMCR |= CoreDebug_DEMCR_TRCENA_Msk;
/* DWT CYCCNT寄存器计数清0 */
DWT->CYCCNT = (uint32_t)0u;
/* 使能Cortex-M DWT CYCCNT寄存器 */
DWT->CTRL |= DWT_CTRL_CYCCNTENA_Msk;
}
然后加入了SWO,SWO有个SWO_STREAM传输方式,在不使用这种方式时,开启了SWO调试后单步调试时能正常打印信息了,但是当点全速运行后感觉像卡住了一样,要等非常长的时间才会在断点处停下,如果程序没有下过断点,点全速后就会出现Keil卡死,也不知道什么原因,看程序代码像是在调用SWO_Data时被阻塞住了一样,而且在等待的时间里操作Keil像是也没法动一样了,非常慢一卡一卡的,进入了断点停下后就没这现象了,此时单步也是正常的,也就是说全速下,SWO有问题了,但在没开启SWO时调试和响应速度哪叫一个爽的啊,SWO部分的串口是直接搬了DAP例子工程里的串口驱动代码进去实现的,不知道是不是这个原因导致SWO被阻塞,或者自己另外写串口驱动提供给SWO,另外串口波特率最高只能2MHZ,超过这频率,SWO打印信息打印不出来的,串口波特率就是在Trace设置页面里看到的SWO 频率
然后改为使用SWO_STREAM传输方式,这种方式是单独使用另一个IN端点进行传输,即DAP的命令调用SWO_Data时只取走了SWO的状态,没取走SWO读到的数据信息,数据信息通过SWO_Thread通过另一个IN端点发送出去,SWO_Thread也是把线程调度修改为标志式让行的方式,对于50毫秒超时处理部分没弄,就这样放到MAIN里的主循环轮询调用,换了这种方式后,SWO单步调试,全速下也能打印信息了,而且全速下不会是卡住了,响应速度就与没开SWO时一样的效果,即没了被阻塞的感觉了,非常爽快,所下的断点,按一个F5马上能停止,非常快的响应速度,但有时候Keil底部状态条会提示Trace:dataOVERFLOW,查了一下这提示说是SWO端口读取太多的数据,导致被截断,具体也弄不明白哪里问题,另外手上使用的自制JLINK V9,开启SWO时,SWO时钟是6.XMHZ时钟频率的,而且连接上芯片后,打印信息啥的都正常的,而且不会有报错等待问题,在想这会不会JLINK的SWO接口是使用SPI做的,毕竟串口这个时钟频率能正常工作吗?DAP里的SWO能否改为SPI接收,因为不使用SWO_STREAM传输时会被阻塞住,很大原因是串口时钟频率太慢了,这估计得研究一个SWO的接收协议才行,个人来说SWO方式还是比较实用的,有人会说会占用一根IO,但要说使用串口进行调试不也是占了一个串口,但又会有人说JLINK的RTT不香么?
声明这个变量static volatile uint32_t SWO_EventFlags=0;
在SWO里每一处调用osThreadFlagsSet的地方都改为如:
//osThreadFlagsSet(SWO_ThreadId, 1U);
SWO_EventFlags = 1U;
// SWO Thread
/*__NO_RETURN void*/uint8_t SWO_Thread (void ) {
//uint32_t timeout;
uint32_t flags;
uint32_t count;
uint32_t index;
uint32_t i, n;
//(void) argument;
//timeout = osWaitForever;
//for (;;) {
//flags = osThreadFlagsWait(1U, osFlagsWaitAny, timeout);
if((SWO_EventFlags & 0x01)==0)return 0;
flags = SWO_EventFlags;
SWO_EventFlags = 0U;
if (TraceStatus & DAP_SWO_CAPTURE_ACTIVE) {
//timeout = SWO_STREAM_TIMEOUT; 这里是对于进入了SWO_CAPTURE_ACTIVE状态时就把线程超时设置为50毫秒,大概意思应该是osThreadFlagsWait到达这个超时时间后,不管标志是否切换为1U,都放行SWO_Thread调用一次,timeout = osWaitForever时相当于无限长的超时等待1U标志,对RTX不熟悉,不知道是不是这样子
;
} else {
//timeout = osWaitForever;
flags = osFlagsErrorTimeout;
}
if (TransferBusy == 0U) {
count = GetTraceCount();
if (count != 0U) {
index = TraceIndexO & (SWO_BUFFER_SIZE - 1U);
n = SWO_BUFFER_SIZE - index;
if (count > n) {
count = n;
}
if(count>USB_BLOCK_SIZE)
count=USB_BLOCK_SIZE;
if (flags != osFlagsErrorTimeout) {
i = index & (USB_BLOCK_SIZE - 1U);
if (i == 0U) {
count &= ~(USB_BLOCK_SIZE - 1U);
} else {
n = USB_BLOCK_SIZE - i;
if (count >= n) {
count = n;
} else {
count = 0U;
}
}
}
if (count != 0U) {
TransferSize = count;
TransferBusy = 1U;
SWO_QueueTransfer(&TraceBuf[index], count);
}
}
}
//}
return 0;
}
利用DWT增加超时等待,先声明变量timeout也在外面声明#define osWaitForever 0xFFFFFFFFU ///< Wait forever timeout value.
#define osFlagsErrorTimeout 0xFFFFFFFEU ///< osErrorTimeout (-2).
static volatile uint32_t SWO_EventFlags=0;
static volatile uint32_t timeout=osWaitForever;
static volatile uint32_t timeWait;
函数改为这样
/*__NO_RETURN void*/uint8_t SWO_Thread (void ) {
//uint32_t timeout;
uint32_t flags;
uint32_t count;
uint32_t index;
uint32_t i, n;
//(void) argument;
//timeout = osWaitForever;
//for (;;) {
//flags = osThreadFlagsWait(1U, osFlagsWaitAny, timeout);
if((SWO_EventFlags & 0x01)==0)
{
if((timeWait-=DWT->CYCCNT)/72000 < timeout) //少于timeout时间值直接返回,DWT->CYCCNT由于这计数值是按72M时钟计数的,所以72000就为1毫秒,0.001*72000000=72000,由于是与DAP处理是顺序执行,这个时间无法准确在50毫秒,但总来说与跑RTX系统 的超时等待差不多原理了
return 0;
}
flags = SWO_EventFlags;
SWO_EventFlags = 0U;
if (TraceStatus & DAP_SWO_CAPTURE_ACTIVE) {
timeout = SWO_STREAM_TIMEOUT;
timeWait=DWT->CYCCNT;
} else {
timeout = osWaitForever;
flags = osFlagsErrorTimeout;
}
if (TransferBusy == 0U) {
count = GetTraceCount();
if (count != 0U) {
index = TraceIndexO & (SWO_BUFFER_SIZE - 1U);
n = SWO_BUFFER_SIZE - index;
if (count > n) {
count = n;
}
if(count>USB_BLOCK_SIZE)
count=USB_BLOCK_SIZE;
if (flags != osFlagsErrorTimeout) {
i = index & (USB_BLOCK_SIZE - 1U);
if (i == 0U) {
count &= ~(USB_BLOCK_SIZE - 1U);
} else {
n = USB_BLOCK_SIZE - i;
if (count >= n) {
count = n;
} else {
count = 0U;
}
}
}
if (count != 0U) {
TransferSize = count;
TransferBusy = 1U;
SWO_QueueTransfer(&TraceBuf[index], count);
}
}
}
//}
return 0;
}这样修改后也不知道能否解决Trace:dataOVERFLOW,也是刚想到的,试了才能知道了,另外还要说明一下,USB_BLOCK_SIZE是声明为512字节的,即SWO_QueueTransfer(&TraceBuf[index], count);时,如果count超过64字节后就得要分包发送了,这个USB库发送部分得自己分包发送,上面的SWO_QueueTransfer发送代码和端点回调处EP2_IN_Callback已经加入发分发送了
CDC部分暂时还没加入,SWD现在是非常稳定的,而且速度感觉也是不差,就是SWO的问题不知道如何弄,另外看到其它人弄DAP,把SWD读写部分改为SPI,看了一些SWD读写协议,它好像有一个8位一组和32位一组的部分,如果换为SPI是不是就可以更快的速度读写了,另外DAP与USB之间的FIFO部分它有一个队列等待,看意思就是当有标志着队列的包时,就等待接收更多的包缓存后再执行处理,对于批量端点,连续的传输大量数据确实是批量端点的长处,因为批量数据时,端点接收完一包后不会NAK,端点会接着接收下一包,少了一些中间商的处理,也尝试过这个队列等待修改为不等待,即接收一个包,执行一次DAP处理,它同样是能正常运行的,对于批量传输来来说,感觉应该队列等待会提高USB传输的速度,比如下载程序时,Keil 一次性下发多个命令包,比如达到1K或者2K字节或者更多,DAP先全部利用批量端点的优势一次性接收下来缓存,然后DAP才执行一个个命令包的响应处理,对于读写部分构成字节为一组的就使用SPI读写数据,零散的位部分像ACK,SWD复位等待部分用IO模拟来处理,SWO部分感觉如果能修改为SPI接收估计时钟频率可以更高,这样响应速度更快,另外STM32_USB-FS-Device_Lib_V4.1.0固件库的USB端点没有FIFO,不像OTG USB FS 库哪样端点都带有FIFO,但是提供双缓存端点,准备把端点修改为双缓存的,这样当连续多包传输时,端点就不会NAK,少了这个等待时间,能增加端点的传输速率
int main(void)
{
DWT_Init();
DAP_Setup();
USB_Interrupts_Config();
Set_USBClock();
USB_Init();
//TIM3_Init(35999,0);
//TIM_Cmd(TIM3,ENABLE);
while (1)
{
DAP_Thread();
#if (SWO_STREAM != 0)
SWO_Thread();
#endif
}
}
对于DAP_config.h的IO配置我是这样弄的
///@}
// Debug Port I/O Pins
// SWCLK/TCK Pin GPIOA[6]
#define SWCLK_TCK_OUT *( uint32_t*)0x42210198
#define SWCLK_TCK_IN *( uint32_t*)0x42210118
// SWDIO/TMS Pin GPIOA[7]
#define SWDIO_TMS_OUT *( uint32_t*)0x4221019C
#define SWDIO_TMS_IN *( uint32_t*)0x4221011C
// SWDIO Output Enable Pin GPIOA[7]
#define SWDIO_Output() {*(uint32_t*)0x4221021C = 1; \
*(uint32_t*)0x42210070 = 1; \
*(uint32_t*)0x42210074 = 1; \
*(uint32_t*)0x42210078 = 0; \
*(uint32_t*)0x4221007C = 0;}
#define SWDIO_Input() {*(uint32_t*)0x4221021C = 1; \
*(uint32_t*)0x42210070 = 0; \
*(uint32_t*)0x42210074 = 0; \
*(uint32_t*)0x42210078 = 0; \
*(uint32_t*)0x4221007C = 1; }
// TDI Pin GPIOA[8]
#define TDI_OUT *(volatile uint32_t*)0x422101A0
#define TDI_IN *(volatile uint32_t*)0x42210120
// TDO Pin GPIOA[10]
#define TDO_OUT *(volatile uint32_t*)0x422101A8
#define TDO_IN *(volatile uint32_t*)0x42210128
// nTRST Pin GPIOB[3]
#define nTRST_OUT *(volatile uint32_t*)0x4221818C
#define nTRST_IN *(volatile uint32_t*)0x4221010C
// nRESET Pin GPIOB[4]
#define nRESET_OUT *(volatile uint32_t*)0x42218190
#define nRESET_IN *(volatile uint32_t*)0x42218110
// nRESET Output Enable Pin GPIOB[4]
#define nRESET_Output() {*(uint32_t*)0x42218210 = 1; \
*(uint32_t*)0x42218040 = 1; \
*(uint32_t*)0x42218044 = 1; \
*(uint32_t*)0x42218048 = 0; \
*(uint32_t*)0x4221804C = 0; }
#define nRESET_Intput() {*(uint32_t*)0x42218210 = 1; \
*(uint32_t*)0x42218040 = 0; \
*(uint32_t*)0x42218044 = 0; \
*(uint32_t*)0x42218048 = 0;\
*(uint32_t*)0x4221804C = 1; }
// Debug Unit LEDs
// Connected LED GPIOC[13]
#define LED_OUT *(volatile uint32_t*)0x422201B4
#define LED_IN *(volatile uint32_t*)0x42220134
#define LED_Intput() {*(uint32_t*)0x42220234 = 1; \
*(uint32_t*)0x422200D0 = 0; \
*(uint32_t*)0x422200D4 = 0; \
*(uint32_t*)0x422200D8 = 0; \
*(uint32_t*)0x422200DC = 1; }
// Target Running LED Not available
// SWCLK/TCK I/O pin -------------------------------------
/** SWCLK/TCK I/O pin: Get Input.
\return Current status of the SWCLK/TCK DAP hardware I/O pin.
*/
__STATIC_FORCEINLINE uint32_t PIN_SWCLK_TCK_IN (void) {
return (SWCLK_TCK_IN);
}
/** SWCLK/TCK I/O pin: Set Output to High.
Set the SWCLK/TCK DAP hardware I/O pin to high level.
*/
__STATIC_FORCEINLINE void PIN_SWCLK_TCK_SET (void) {
SWCLK_TCK_OUT = 1;
}
/** SWCLK/TCK I/O pin: Set Output to Low.
Set the SWCLK/TCK DAP hardware I/O pin to low level.
*/
__STATIC_FORCEINLINE void PIN_SWCLK_TCK_CLR (void) {
SWCLK_TCK_OUT = 0;
}
// SWDIO/TMS Pin I/O --------------------------------------
/** SWDIO/TMS I/O pin: Get Input.
\return Current status of the SWDIO/TMS DAP hardware I/O pin.
*/
__STATIC_FORCEINLINE uint32_t PIN_SWDIO_TMS_IN (void) {
return (SWDIO_TMS_IN);
}
/** SWDIO/TMS I/O pin: Set Output to High.
Set the SWDIO/TMS DAP hardware I/O pin to high level.
*/
__STATIC_FORCEINLINE void PIN_SWDIO_TMS_SET (void) {
SWDIO_TMS_OUT = 1;
}
/** SWDIO/TMS I/O pin: Set Output to Low.
Set the SWDIO/TMS DAP hardware I/O pin to low level.
*/
__STATIC_FORCEINLINE void PIN_SWDIO_TMS_CLR (void) {
SWDIO_TMS_OUT = 0;
}
/** SWDIO I/O pin: Get Input (used in SWD mode only).
\return Current status of the SWDIO DAP hardware I/O pin.
*/
__STATIC_FORCEINLINE uint32_t PIN_SWDIO_IN (void) {
return (SWDIO_TMS_IN);
}
/** SWDIO I/O pin: Set Output (used in SWD mode only).
\param bit Output value for the SWDIO DAP hardware I/O pin.
*/
__STATIC_FORCEINLINE void PIN_SWDIO_OUT (uint32_t bit) {
SWDIO_TMS_OUT = bit;
}
/** SWDIO I/O pin: Switch to Output mode (used in SWD mode only).
Configure the SWDIO DAP hardware I/O pin to output mode. This function is
called prior \ref PIN_SWDIO_OUT function calls.
*/
__STATIC_FORCEINLINE void PIN_SWDIO_OUT_ENABLE (void) {
SWDIO_Output();
}
/** SWDIO I/O pin: Switch to Input mode (used in SWD mode only).
Configure the SWDIO DAP hardware I/O pin to input mode. This function is
called prior \ref PIN_SWDIO_IN function calls.
*/
__STATIC_FORCEINLINE void PIN_SWDIO_OUT_DISABLE (void) {
SWDIO_Input();
}
楼上有的说弄无线,其实无线也就是PC<->USB<->无线模块A<->无线模块B-DAP,数据传输的速率主要是无线模块之间的速率限制了,也是非常简单的
即单片机先做好USB接口部分,OUT端点收到的数据发送到无线模块A,无线模块B接收到数据后,推给DAP处理,DAP响应的数据再让无线模块B发送回无线模块A,再通过USB发送回PC,也就是说USB与DAP之间也就多了两个无线模块作为数据的交换,要是会写USB驱动,写个虚拟WINUSB设备的驱动,让Keil的DAP驱动能识别到这个虚拟USB设备,通过ESP32利用WIFI通信应该比使用这种无线模块更快,而且ESP32主频更高,即使IO模拟 SWD接口,都会更快,会写USB驱动的大佬可以尝试一下